Supplementary Information

Fast, Efficient and Clean Adsorption of Bisphenol-A Using Renewable Mesoporous Silica Nanoparticles from Sugarcane Waste Ash

Suzimara Rovani^{*a}, Jonnatan J. Santos^b, Sabine N. Guilhen^a, Paola Corio^b and Denise A. Fungaro^a

^a Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP - Av. Prof. Lineu Prestes, 2242 -Cidade Universitária - CEP 05508-000, São Paulo - SP - Brazil. *E-mail: suzirovani@gmail.com

^b Instituto de Química, Universidade de São Paulo - Av. Prof. Lineu Prestes, 748 - Cidade Universitária
- P.O. Box 26077 - CEP 05508-000, São Paulo, SP, Brazil.

Kinetic Adsorption Models

Kinetic adsorption models used in this publication were pseudo-first order^{1, 2} (Eq. S1) and pseudo-second order³⁻⁵ (Eq. S2).

$$q_t = q_e \cdot \left(1 - e^{(-k_1 t)}\right)$$
 (Eq. S1)

$$q_t = \frac{k_2 \cdot q_e^2 t}{1 + k_2 \cdot q_e \cdot t}$$
(Eq. S2)

where in the Eq. S1, q_t is the amount of adsorbate adsorbed at time t (mg g⁻¹), q_e is the equilibrium adsorption capacity (mg g⁻¹), k_1 is the pseudo-first-order rate constant (h⁻¹), and t is the contact time (h). Eq. S2, k_2 is the pseudo-second-order rate constant (g mg⁻¹ h⁻¹).⁶⁻⁸

Validation of Adsorption Kinetics

Chi-square (Eq. S3) was used to validate the kinetics model.⁹

$$X^{2} = \sum_{i=1}^{n} \frac{(q_{exp} - q_{cal})^{2}}{q_{cal}}$$
(Eq. S3)

 q_{exp} and q_{cal} are experimentally determined quantity adsorbed at equilibrium and calculated quantity adsorbed at equilibrium respectively.

Other Kinetic Adsorption Models

Elovich model

The nonlinear form of the Elovich kinetic model is expressed by the Eq. S4.9

$$q_t = \beta . \ln(\alpha, \beta, t) \tag{Eq. S4}$$

 q_t is the quantity of adsorbate adsorbed at time t (mg g⁻¹), α is a constant related to chemisorption rate and β is a constant which depicts the extent of surface coverage.

Fractional power kinetic model

The nonlinear form of the Fractional power kinetic model is expressed by the Eq. S5.9

$$q_t = \text{K.}\,\text{t}^{\text{v}}$$
 (Eq. S5)

 q_t is the quantity of adsorbate adsorbed at time t (mg g⁻¹), K is constant, v is constant that is usually less than unity if adsorption kinetic data fit well into the power function model.

Equilibrium Adsorption Models

Equilibrium adsorption models utilized were Langmuir¹⁰ (Eq. S6); Freundlich¹¹ (Eq. S7) and Liu⁸ (Eq. S8).

$$q_e = \frac{Q_{max} \cdot K_L \cdot C_e}{1 + K_L \cdot C_e}$$
(Eq. S6)

 q_e is the amount of adsorbate adsorbed at the equilibrium (mg g⁻¹), C_e is the adsorbate concentration at the equilibrium, i.e., C_e is the adsorbate concentration residual on solution (mg L⁻¹), K_L is the Langmuir equilibrium constant (L mg⁻¹), and Q_{max} is the maximum adsorption capacity of the adsorbent (mg g⁻¹).⁸

$$q_e = K_F \cdot C_e^{\frac{1}{n_F}}$$
(Eq. S7)

 K_F is the Freundlich equilibrium constant (mg g⁻¹(mg L⁻¹)^{-1/nF}), n_F is the Freundlich exponent (dimensionless) and C_e is the adsorbate concentration residual on solution (mg L⁻¹).⁸

$$q_e = \frac{Q_{max} \cdot (K_g \cdot C_e)^{n_L}}{1 + (K_g \cdot C_e)^{n_L}}$$
(Eq. S8)

S-3

 K_g is the Liu equilibrium constant (L mg⁻¹); n_L is dimensionless exponent of the Liu equation; Q_{max} is the maximum adsorption capacity of the adsorbent (mg g⁻¹), C_e is the adsorbate concentration residual on solution (mg L⁻¹) and n_L could assume any positive value.⁸

TEM images

Fig. S1 TEM images of mesoporous silica nanoparticles (MSN-CTAB) with two different magnifications.

Study of the Effect of pH

Fig. S2 UV spectra before BPA adsorption (a) initial solution 100 mg L⁻¹ at different pH values from 4 to 12; and after 2h of BPA adsorption for 190 rpm at 25 °C (b) pH values from 4 to 12. Samples in triplicate.

In the bisphenol-A solutions at pH 10, 11, and 12 (Fig. S2a). The shift was due to a change in pH in which a higher pH resulted in deprotonation of the compounds which allowed increased conjugation. Conjugation lowers the energy of the bonds in the molecule resulting in a redshift of the λ_{max} . Therefore, the pH of the samples for UV-Vis analysis needed to be regulated to maintain the wavelength of maximum absorption for quantification.¹²

Table	S1.	Effect	of	the	initial	рН	on	the	adsorption	capacity	of	BPA.	Conditions:	25	°C,	initial
conce	ntrat	tion 10	0 m	ig L ⁻¹	, conta	ct ti	me	2 h a	and adsorbe	nt mass 1	.0 g	g L ⁻¹ .				

Initial pH	Final pH	q experimental (mg g ⁻¹)
(4) 4.1	4.4	75.74 ± 0.8862
(5) 4.9	5.1	$\textbf{76.88} \pm \textbf{1.103}$
(6) 5.9	5.4	75.98 ± 0.3586
(7) 7.0	5.6	78.46 ± 0.7024
(8) 8.0	5.4	77.93 ± 1.466
(9) 9.1	5.6	78.54 ± 0.1994
(10) 9.9	6.7	83.28 ± 0.4766
(11) 10.9	9.3	91.98 ± 1.585
(12) 11.9	11.6	59.26 ± 0.7943

BPA Calibration Curve

Fig. S3 UV spectra of the BPA-containing solution at pH 11 at concentrations ranging from 5.00 to 60.0 mg L^{-1} . Inserted graph: BPA analytical curve at pH 11.

Kinetic Study

Fig. S4 UV spectra before BPA adsorption (a) initial solution 80.9 mg L⁻¹ at pH 11; and after BPA adsorption at 25 °C (b) 5 min of centrifugation, 5 min to 3 h + 5 min of centrifugation. Samples in triplicate.

Time (minutes)	Initial pH	Final pH	q _t experimental (mg g ⁻¹)
(5 min of centrifugation)	11	10.5	$\textbf{33.11} \pm \textbf{1.149}$
5 + (5 min of centrifugation)	11	9.8	66.49 ± 0.4466
15 + (5 min of centrifugation)	11	9.9	$\textbf{72.10} \pm \textbf{0.8751}$
30 + (5 min of centrifugation)	11	9.8	$\textbf{74.24} \pm \textbf{0.2475}$
60 + (5 min of centrifugation)	11	9.5	$\textbf{75.59} \pm \textbf{0.1170}$
90 + (5 min of centrifugation)	11	9.9	75.20 ± 0.2636
120 + (5 min of centrifugation)	11	9.7	75.51 ± 0.4865
180 + (5 min of centrifugation)	11	9.7	75.86 ± 0.3614

Table S2. Effect of the contact time on the adsorption capacity of BPA.

Table S3. Kinetic parameters of BPA adsorption on MSN-CTAB.

Pseudo-first-order	Calculated	Experimental
<i>k_f</i> (min ⁻¹)	0.1506 ± 0.0172	-
$q_e (\mathrm{mg}~\mathrm{g}^{-1})$	$\textbf{75.79} \pm \textbf{1.696}$	$\textbf{75.59} \pm \textbf{0.1170}$
R ² ajd.	0.9784	-
X ²	0.000529	-
Pseudo-second-order	Calculated	Experimental
<i>ks</i> (g mg ⁻¹ min ⁻¹)	$3.006 \times 10^{-3} \pm 0.0196$	-
$q_e (\mathrm{mg}\mathrm{g}^{-1})$	$\textbf{80.51} \pm \textbf{3.443}$	$\textbf{75.59} \pm \textbf{0.1170}$
R ² ajd.	0.9470	-
X ²	0.3202	-

Pseudo-first-order model:

Nonlinear Curve Fit (BoxLucas1) (05/05/2020 09:02:05)

Parameters

		Value	Standard Error
qt	а	75.79348	1.69616
	b	0.15062	0.01721

Reduced Chi-sqr = 15.3064025454 COD(R^2) = 0.98111454193452 Iterations Performed = 1 Total Iterations in Session = 1

Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Statistics

	qt
Number of Points	9
Degrees of Freedom	7
Reduced Chi-Sqr	15.3064
Residual Sum of Squares	107.14482
Adj. R-Square	0.97842
Fit Status	Succeeded(100)

Pseudo-second-order model:

Nonlinear Curve Fit (RectHyperbola) (05/05/2020 09:03:29)

Parameters

		Value	Standard Error
qt	а	80.51322	3.4428
	b	0.24205	0.06781

Reduced Chi-sqr = 37.5921857066 COD(R^2) = 0.95361773319078 Iterations Performed = 1

Total Iterations in Session = 1

Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Statistics

	qt
Number of Points	9
Degrees of Freedom	7
Reduced Chi-Sqr	37.59219
Residual Sum of Squares	263.1453
Adj. R-Square	0.94699
Fit Status	Succeeded(100)

Other kinetic models:

Fig. S5 Models kinetics plot for the removal of BPA by MSN-CTAB. (adsorbent mass 1.0 g L⁻¹).

Pseudo-first-order	Calculated
k_f (min ⁻¹)	0.1506 ± 0.0185
$q_e (\mathrm{mg}\mathrm{g}^{-1})$	$\textbf{75.79} \pm \textbf{1.832}$
R ² ajd.	0.9167
Pseudo-second-order	Calculated
<i>k</i> s (g mg ⁻¹ min ⁻¹)	$3 \times 10^{-3} \pm 0.0010$
$q_e (\mathrm{mg}\mathrm{g}^{-1})$	$\textbf{80.51} \pm \textbf{3.717}$
R ² ajd.	0.7955
Elovich	Calculated
lpha (mg g ⁻¹ min ⁻¹)	$\textbf{6.144} \pm \textbf{17.75}$
eta (mg g ⁻¹)	$\textbf{8.942} \pm \textbf{2.948}$
R ² ajd.	0.5396
Fractional power	Calculated
<i>V</i> (min ⁻¹⁾	0.1224 ± 0.0489
<i>K</i> (mg g ⁻¹)	$\textbf{43.38} \pm \textbf{8.777}$
R ² ajd.	0.4784

Table S4. Kinetic parameters of BPA adsorption on MSN-CTAB.

Pseudo-first-order model:

Nonlinear Curve Fit (BoxLucas1) (25/06/2020 13:40:47)

Parameters

		Value	Standard Error
qt	а	75.79348	1.83207
	b	0.15062	0.01859

Reduced Chi-sqr = 17.8574696362 COD(R^2) = 0.92862152884418 Iterations Performed = 1 Total Iterations in Session = 1 Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Statistics

	qt
Number of Points	8
Degrees of Freedom	6
Reduced Chi-Sqr	17.85747
Residual Sum of Squares	107.14482
Adj. R-Square	0.91673
Fit Status	Succeeded(100)

Pseudo-second-order model:

Nonlinear Curve Fit (pseudo2ordem (User)) (25/06/2020 13:34:03) Parameters

T ulumetero						
		Value	Standard Error			
qt	k	0.00301	0.00101			
	qe	80.51307	3.71701			

Reduced Chi-sqr = 43.8575500057 COD(R^2) = 0.82469605538643 Iterations Performed = 1 Total Iterations in Session = 1 Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Statistics

	qt
Number of Points	8
Degrees of Freedom	6
Reduced Chi-Sqr	43.85755
Residual Sum of Squares	263.1453
Adj. R-Square	0.79548
Fit Status	Succeeded(100)

Elovich model:

Nonlinear Curve Fit (Elovich (User)) (24/06/2020 16:48:43)

Parameters

		Value	Standard Error
at	а	6.14403	17.75619
qı	b	8.94257	2.94779

Reduced Chi-sqr = 98.7352817162 COD(R^2) = 0.60534310842408 Iterations Performed = 1 Total Iterations in Session = 1 Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Statistics

	qt
Number of Points	8
Degrees of Freedom	6
Reduced Chi-Sqr	98.73528
Residual Sum of Squares	592.41169
Adj. R-Square	0.53957
Fit Status	Succeeded(100)

Fractional power kinetic model:

Nonlinear Curve Fit (FractionalPower (User)) (24/06/2020 16:58:44) Parameters

		Value	Standard Error	
at	K	43.38569	8.77778	
qt	v	0.12242	0.04894	

Reduced Chi-sqr = 111.854711937 COD(R^2) = 0.55290315524766 Iterations Performed = 1 Total Iterations in Session = 1 Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Statistics

	qt
Number of Points	8
Degrees of Freedom	6
Reduced Chi-Sqr	111.85471
Residual Sum of Squares	671.12827
Adj. R-Square	0.47839
Fit Status	Succeeded(100)

Thermogravimetric Analysis

Fig. S6 TG curves of MSN-CTAB, BPA and MSN-CTAB + BPA.

Table S5. Thermogravime	tric analysis of MSN-CTAB,	BPA and MSN-CTAB after	BPA adsorption.
-------------------------	----------------------------	------------------------	-----------------

Complex	1 st wt. loss	2 nd wt. loss	3 rd wt. loss	4 th wt. loss	Residue
Samples	(%)	(%)	(%)	(%)	(%)
	(25-120 °C)	(120-235 °C)	(235-274 °C)	(274-550 °C)	65.24
WISIN-CIAD	2.05	7.85	14.22	10.54	05.54
PDA	(25-155 °C)	(155-300 °C) (300-470 °C)		1 00	
DFA	2.53	87.87 8.60		8.60	1.00
	(25-120 °C)	(120-250 °C)	(250-337 °C)	(337-550 °C)	65 56
	2.57	8.71	9.97	13.19	03.30

Isotherm Study

Fig. S7 UV spectra before BPA adsorption (a) initial solutions at pH 11 and concentrations from 47.5 to 255 mg L⁻¹; and after BPA adsorption at equilibrium time 1 h (b) 25°C isotherm. Samples in triplicate.

Initial Concentration (mg L ⁻¹)	Final pH	C _e (mg L ⁻¹)	q _e experimental (mg g ⁻¹)
0	0	0	0
47.5	9.4	$\textbf{1.70} \pm \textbf{0.1622}$	45.32 ± 0.8607
67.6	9.1	$\textbf{3.43} \pm \textbf{0.0973}$	63.32 ± 0.8792
97.1	10	$\textbf{6.98} \pm \textbf{0.2883}$	88.63 ± 1.053
115.6	10.3	$\textbf{16.33} \pm \textbf{1.578}$	$\textbf{97.98} \pm \textbf{1.145}$
137.5	10.4	$\textbf{30.45} \pm \textbf{2.418}$	106.01 ± 1.345
180.7	10.7	60.56 ± 1.161	120.11 ± 1.161
255	10.8	117.01 ± 6.992	136.16 ± 6.137

Table S6. Effect of the initial concentration on the adsorption capacity of BPA in pH 11.

Table S7. Isotherm parameters of BPA adsorption on MSN-CTAB.

Langmuir	
$Q_{max} (mg g^{-1})$	128.19
\mathcal{K}_L (L mg ⁻¹)	0.2829
$R^{2}_{ajd.}$	0.9746
Reduced Chi-squared	49.526
Freundlich	
$K_F (\text{mg g}^{-1} (\text{mg L}^{-1})^{-1/n} F)$	51.159
n _F	4.7451
R ² ajd.	0.9716
Reduced Chi-squared	55.489
Liu	
<i>Q_{max}</i> (mg g ⁻¹)	155.78
K_g (L mg ⁻¹)	0.1567
n _L	0.5873
R ² _{ajd.}	0.9851
Reduced Chi-squared	29.045

 Q_{max} : maximum amount adsorbed; K_L : Langmuir equilibrium constant; R^2_{adj} : adjusted coefficient of determination; K_F : Freundlich equilibrium constant; n_F : dimensionless exponent of the Freundlich equation; K_g : Liu equilibrium constant; n_L : dimensionless exponent of the Liu equation.

References

- 1 S. Lagergren, K. Sven. Vetensk. Handl. , 1898, 24, 1-39.
- 2 Y. S. Ho and G. McKay, Chem. Eng. J., 1998, 70, 115-124.
- 3 G. Blanchard, M. Maunaye and G. Martin, Water Res., 1984, 18, 1501-1507.
- 4 Y.-S. Ho, Doctorates > Ph.D., University of Birmingham, 1995.
- 5 Y. S. Ho, D. A. J. Wase and C. F. Forster, *Environ. Technol.*, 1996, **17**, 71-77.
- 6 Y.-S. Ho, J. Hazard. Mater., 2006, 136, 681-689.
- 7 Y.-S. Ho, Environ. Sci. Pollut. Res., 2014, 21, 7234-7235.
- 8 É. C. Lima, M. A. Adebayo and F. M. Machado, in *Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications*, eds. C. P. Bergmann and F. M. Machado, Springer International Publishing, 1 edn., 2015, DOI: 10.1007/978-3-319-18875-1, ch. 3, pp. 33-69.
- 9 A. A. Inyinbor, F. A. Adekola and G. A. Olatunji, Water Resour. Ind., 2016, 15, 14-27.
- 10 I. Langmuir, J. Am. Chem. Soc., 1918, 40, 1361-1403.
- 11 H. M. F. Freundlich, J. Phys. Chem., 1906, 57, 385-471.
- 12 R. J. Alessio, X. Li and D. F. Martin, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 2012, 47, 2198-2204.