ELECTRONIC SUPPLEMENTARY INFORMATIONS

TABLE OF CONTENTS

Representation of improved synthesis of DAPG	(81)
Characterisation Data of Catalyst	(S2)
¹ H NMR and ¹³ C NMR Spectra	(S3)
EATOS Results	(S4)
Andraos Results	(85)
Energy Requirements Calculation Results	(86)
References	(87)

REPRESENTATION OF IMPROVED SYNTHESIS OF DAPG (S1)

FIGURE S1. Representation of improved synthesis of DAPG

CHARACTERISATION DATA OF CATALYST (S2)

FIGURE S2. XRD spectra of silica gel (SG) and silica sulphuric acid (SSA)

FIGURE S3. (a) SEM image of silica gel (SG), (b) EDS spectrum of silica gel (SG), (c) SEM image of silica sulphuric acid (SSA), (d) EDS spectrum of silica gel (SG)

Figure S4. XRD spectra of recycle silica sulphuric acid (rSSA)

Figure S5. FTIR spectra of recycle silica sulphuric acid (rSSA)

Figure S6. SEM image of recycle silica sulphuric acid (rSSA)

¹H NMR AND ¹³C NMR SPECTRA (S3)

HO

0.

OH

ÓН

1-(2,4,6-trihydroxyphenyl)ethan-1-one (6a). ¹H NMR (CD₃Cl₃, 500 MHz) δ ppm: 6.01 (s, 1H, 2 x ArH), 2.70 (s, 3H, CH₃). ¹³C NMR (CD₃Cl₃, 125 MHz) δ ppm: 203.58, 165.32, 107.01, 95.81, 32.21. The data of ¹H NMR and ¹³C NMR were agreed with the literature values¹.

¹H NMR spectrum of 1-(2,4,6-trihydroxyphenyl)ethan-1-one

¹³C NMR spectrum of 1-(2,4,6-trihydroxyphenyl)ethan-1-one

1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(ethan-1-one) (3). ¹H NMR (CD₃Cl₃, 500 MHz) δ ppm: 6.20 (s, 1H, ArH), 2.63 (s, 6H, 2 x CH₃).¹³C NMR (CD₃Cl₃, 125 MHz) δ ppm: 205.56, 173.56, 170.65, 104.83, 98.63, 33.23. The data of ¹H NMR and ¹³C NMR were agreed with the literature values¹.

HO

0

OH

¹H NMR spectrum of 1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(ethan-1-one)

¹³C NMR spectrum of 1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(ethan-1-one)

2-methyl-1-(2,4,6-trihydroxyphenyl)propan-1-one (6b). ¹H NMR (CD₃Cl₃, 500 MHz) δ ppm: 5.84 (s, 2H, 2 x ArH), 3.84 (p, J = 5.4 Hz, 1H, -CH(CH₃)₂), 1.15 (d, J = 5.5 Hz, 6H, 2 x CH₃).¹³C NMR (CD₃Cl₃, 125 MHz) δ ppm: 211.02, 172.70, 170.29, 105.74, 96.12, 39.58, 19.53. The data of ¹H NMR and ¹³C NMR were agreed with the literature values²⁻⁴.

¹H NMR spectrum of 2-methyl-1-(2,4,6-trihydroxyphenyl)propan-1-one

¹³C NMR spectrum of 2-methyl-1-(2,4,6-trihydroxyphenyl)propan-1-one

1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(2-methylpropan-1-one) (5a). ¹H NMR (CD₃Cl₃, 500 MHz) δ ppm: 6.19 (s, 1H, ArH), 3.52 (p, J = 5.4 Hz, 2H, 2 x -CH(CH₃)₂), 1.15 (d, J = 5.4 Hz, 12H, 4 x CH₃).¹³C NMR (CD₃Cl₃, 500 125) δ ppm: δ 212.07, 170, 168, 104.21, 98.97, 39.59, 19.21. The data of ¹H NMR and ¹³C NMR were agreed with the literature values².

¹H NMR spectrum of 1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(2-methylpropan-1-one)

¹³C NMR spectrum of 1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(2-methylpropan-1-one)

3-methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one (6c). ¹H NMR (CD₃Cl₃, 500 MHz) δ ppm: 5.83 (s, 2H, 2 x ArH), 2.83 (d, 2H, -CH₂-CH<), 2.25 (dt, J = 11.0, 5.5 Hz, 1H, -CH(CH₃)₂), 0.95 (d, J = 5.4 Hz, 12H, 4x CH₃).¹³C NMR (CD₃Cl₃, 125 MHz) δ ppm: 206.16, 164.5, 165.7, 105.78, 96.11, 52.89, 25.53, 22.77. The data of ¹H NMR and ¹³C NMR were agreed with the literature values².

¹H NMR spectrum of 3-methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one

¹³C NMR spectrum of 3-methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one

1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(3-methylbutan-1-one) (5b).

¹H NMR (CD₃Cl₃, 500 MHz) δ ppm: : 6.20 (s, 1H, ArH), 2.9 (d, J = 5.6 Hz, 4H, 2 x -CH₂-CH(CH₃)₂), 2.26 (dh, J = 11.0, 5.5 Hz, 2H, 2 x CH₂-CH(CH₃)₂), 0.97 (d, J = 5.4 Hz, 12H, 4x CH₃). ¹³C NMR (CD₃Cl₃, 125 MHz) δ ppm: 205.98, 167.07, 103.73, 99.19, 53.09, 24.94, 22.81. The data of ¹H NMR and ¹³C NMR were agreed with the literature values².

¹H NMR spectrum of 1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(3-methylbutan-1-one)

¹³C NMR spectrum of 1,1'-(2,4,6-trihydroxy-1,3-phenylene)bis(3-methylbutan-1-one)

1-(3-acetyl-2,4,6-trihydroxyphenyl)-2-methylpropan-1-one (7a). ¹H NMR (CD₃Cl₃, 500 MHz) δ ppm: 6.21(s, 1H, ArH), 3.57 – 3.47 (m, 1H, -CH(CH₃)₂), 2.64 (s, 3H, CH₃), 1.15 (d, J = 5.4 Hz, 6H, 2 x CH₃). ¹³C NMR (CD₃Cl₃, 125 MHz) δ ppm: 212.20, 205.45, 167.51, 166.80, 104.89, 99.18, 39.65, 33.23, 19.26.

¹H NMR spectrum of 1-(3-acetyl-2,4,6-trihydroxyphenyl)-2-methylpropan-1-one

¹³C NMR spectrum of 1-(3-acetyl-2,4,6-trihydroxyphenyl)-2-methylpropan-1-one

1-(3-acetyl-2,4,6-trihydroxyphenyl)-3-methylbutan-1-one (7b). ¹H NMR (CD₃Cl₃, 500 MHz) δ ppm: 6.2 (s, 1H, ArH), 2.87 (d, J = 5.6 Hz, -CH₂-CH(CH₃)₂), 2.64(s, 3H, CH₃), 2.25 (dt, J = 11.0, 5.5 Hz, 1H, CH₂-CH(CH₃)₂), 0.96 (d, J = 5.5 Hz, 6H, 2 x CH₃). ¹³C NMR (CD₃Cl₃, 125 MHz) δ ppm: 206.66, 205.44, 166.73, 166.11, 104.52,

103.13, 98.80, 53.05, 33.23, 25.50, 22.78

¹H NMR spectrum of 1-(3-acetyl-2,4,6-trihydroxyphenyl)-3-methylbutan-1-one

¹³C NMR spectrum of 1-(3-acetyl-2,4,6-trihydroxyphenyl)-3-methylbutan-1one

EATOS RESULTS (S4)

Table S1. S⁻¹, EI_{in}, E, and EI_{out} measured for synthesis A

Synthesis A	S-1	EI _{in}	Е	EI _{out}
Total	3.43	13.71	2.43	5.72
Catalyst				
MSA	1.46	5.84	1.46	1.46
Substrates				
Phloroglucinol	0.64	3.19		
Acetic anhydride	1.03	3.617		1.37
By-products				
Coupled products				
Acetic acid			0.57	2.57

Synthesis B	S-1	EI _{in}	Е	Elout
Total	108	419.86	107	16.6
Solvent				
dioxane	89.10	356.39	89.10	89.10
Catalyst				
Boron trifluoride	9	35.93	9	9
Substrates				
Phloroglucinol	1.1	5.45		
Acetic anhydride	8.8	22.08	7.06	31.79
By-products			1.29	407
Coupled products				
Acetic acid			0.57	2.57

Table S2. S⁻¹, EI_{in} , E, and EI_{out} measured for synthesis B

Synthesis A	S-1	EI _{in}	Е	EI _{out}
Total	12.14	22.87	11.14	16.6
Catalyst				
MSA	9.22	9.22	9.22	9.22
Substrates				
Phloroglucinol	0.97	4.83		
	1.0.0	0.01		1.50
Acetic anhydride	1.96	8.81	0.39	1.76
			0.06	2.05
By-products			0.96	3.05
Coupled products				
				0.55
Acetic acid			0.57	2.57

Table S3. S⁻¹, EI_{in}, E, and EI_{out} measured for synthesis C

Synthesis A	S-1	EI _{in}	E	EI _{out}
Total	3.43	5.6	0.76	2.57
Catalyst				
NHZMOR	1.46	0.1	0.1	0.1
Substrates				
Phloroglucinol	0.64	1.9		0.04
Acetic anhydride	1.03	3.6		
By-products			0.08	0.45
Coupled products				
MAPG			0.4	1.8
Water			0.18	0.17

Table S4. S⁻¹, EI_{in} , E, and EI_{out} measured for synthesis D

Synthesis A	S-1	EI _{in}	E	EI _{out}
Total	3.43	5.25	0.61	2.05
Catalyst				
SSA	1.46	0.03	0.03	0.03
Substrates				
Phloroglucinol	0.64	1.8	0.006	0.04
Acetic anhydride	1.03	3.4		1.37
By-products				
Coupled products				
MAPG			0.4	1.8
water			0.17	0.17

Table S5. S⁻¹, EI_{in}, E, and EI_{out} measured for synthesis E

ANDRAOS ALGORITHM RESULTS (S5)

Table S6. Comparison of Raw Material Footprint for Syntheses A–E According to the Andraos

 Algorithm

	А	В	С	D	Present
AE	0.424	0.182	0.633	0.633	0.633
Rxn	0.881	0.300	0.600	0.942	0.947
Yield					
1/SF	0.391	0.111	0.617	0.617	0.617
MRP	0.904	0.207	0.053	0.867	1.000
RME	0.132	0.001	0.012	0.319	0.370

ENERGY CALCULATION RESULTS (S6)

Table S7. Comparison of the energy consumed by oil bath (Δ), microwave (MW) and ultrasound (US) heating for the Friedel-Crafts acylation between phloroglucinol and acetic anhydride.

Entry	Heating	mmol	Yield	Р	t (h)	E (kWh)	Ε
	method		(%)	(kW)	. ()	_ ()	(kWh/mol)
A	MW	1	88	0.7	0.02	0.01	13.26
В	Oil bath	1	30	1.44	0.5	0.72	2400
С	Oil bath	2.5	60	1.44	2	2.88	12000
D	Oil bath	1	95	1.44	0.5	0.72	757.89
E	US	1	95	0.16	0.33	0.05	56.14

REFERENCES (S7)

- Marchand, P. A., Weller, D. M. & Bonsall, R. F. Convenient synthesis of 2,4diacetylphloroglucinol a natural antibiotic involved in the control of take-all disease of wheat. J. Agric. Food Chem. 48, 1882–1887 (2000).
- 2. Meepagala, K. M. & Schrader, K. K. Antibacterial Activity of Acylglucinol Derivatives against Flavobacterium columnare. 89–95 (2014).
- 3. Ng, C. H. *et al.* Synthesis and docking studies of 2,4,6-trihydroxy-3-geranylacetophenone analogs as potential lipoxygenase inhibitor. *Molecules* **19**, 11645–11659 (2014).
- George, J. H., Hesse, M. D., Baldwin, J. E. & Adlington, R. M. Biomimetic synthesis of polycyclic polyprenylated acylphloroglucinol natural products isolated from hypericum papuanum. *Org. Lett.* 12, 3532–3535 (2010).