Supplementary Information

MOF-derived Manganese Oxide/Carbon Nanocomposites with Raised

Capacitance for Stable Asymmetric Supercapacitor

By Ruoyu Wang, Yating Hu, Zhenghui Pan,* John Wang,*

Email: <u>msepz@nus.edu.sg</u>; <u>msewangj@nus.edu.sg</u>

Figure S1. The XRD of as synthesized Mn-MIL-100.

Figure S2. The SEM image of Mn-MIL-100 MOF.

Figure S3. The residue of TGA on MnO@C XRD of is found to be Mn_3O_4 .

Figure S4. EDS mapping of (a) Mn_3O_4 -300 and (b) Mn_2O_3 -400.

Figure S5. The N_2 isotherm and DFT pore distribution of (a) Mn_3O_4 -300 and (b) Mn_2O_3 -400, respectively.

Figure S6. EDS mapping of Mn₃O₄@C-5h.

Figure S7. The TGA result of Mn₃O₄@C-5h.

Figure S8. XPS spectroscopy for a) Mn 2p, and b) Mn 3s.

Figure S9. A summary on the thermolysis processes and their respective products involved in this chapter.

Figure S10. The CV and GCD patterns of MnO@C, Mn₃O₄-300 and Mn₂O₃-400, respectively.

Figure S11. The CV and GCD patterns of $Mn_3O_4@C-1h$, $Mn_3O_4@C-2h$ and $Mn_3O_4@C-5h$, respectively.

Figure S12. (a) double-layer capacitance C_0 , and (b) maximum capacitance C_{max} of $Mn_3O_4@C-2h$.

The double-layer capacitance C₀ and maximum capacitance C_{max} of Mn₃O₄@C-2h. were estimated to be 17.3 F g⁻¹ and 285.7 F g⁻¹ respectively, by the Trassatti's method. The relative contribution of double-layer capacitance was thus within the region of ~10 % (6.1 %). It is worth nothing that we only selected the two low frequency (i.e., v = 10 mV/s and 20 mV/s) data points from the available data due to the obvious deviation from linear relationship when the scan rate increases as a result of the internal resistance.

Figure S13. Schematic illustrating the manufacturing process of $Mn_3O_4@C/rGO$ electrode.

Figure S14. The cross-section SEM of $Mn_3O_4@C/GO$.

Figure S15. The demonstration of the flexibility of $Mn_3O_4@C/GO$.

Figure S16. (a) Raman and (b) XPS analysis results of $Mn_3O_4@C/GO$ and $Mn_3O_4@C/rGO$.

Figure S17. The TGA results of Mn₃O₄@C/GO and Mn₃O₄@C/rGO, respectively.

Figure S18. TEM of the Mn₃O₄@C/rGO.

Figure S19. The CV pattern of $Mn_3O_4@C/rGO$ and rGO.

Figure S20. The cross-section SEM of CNT/rGO.

Figure S21. (a) CV patterns of the CNT/rGO paper electrode. (b) CV curves of CNT/rGO and $Mn_3O_4@C/rGO$, respectively, at 10 mV/s.