## Fused Multicyclic Polyketides with a Two-Spiro-Carbon Skeleton from Mangrove-Derived Endophytic Fungus *Epicoccum nigrum* SCNU-F0002

Zhangyuan Yan<sup>a</sup>, Jialin Li<sup>a</sup>, Geting Ye<sup>a</sup>, Tao Chen<sup>a</sup>, Meimei Li<sup>a</sup>, Yanming Liang<sup>a</sup>, Yuhua Long<sup>a</sup>, \*

<sup>a</sup> Z. Yan, J. Lin, G. Ye, T. Chen, M. Li, Y. Liang, Prof.Y. Long

Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine,

School of Chemistry,

South China Normal University,

Guangzhou 510006, China.

\*Corresponding authors. E-mail addresses: <u>Yuhualong68@hotmail.com</u> (Prof.Yuhua Long)

# Contents

| Fig.S1. HR-ESI-MS spectrum of (±1)                                                                 | .3 |
|----------------------------------------------------------------------------------------------------|----|
| <b>Fig.S2.</b> <sup>1</sup> H- NMR spectrum (DMSO, 600MHz) of (±1)                                 | .3 |
| Fig.S3. DEPT 135 and <sup>13</sup> C-NMR spectrum (DMSO, 600MHz) of compound (±1)                  | .4 |
| Fig.S4. <sup>1</sup> H- <sup>1</sup> H COSY spectrum (DMSO, 600MHz) of compound (±1)               | .4 |
| Fig.S5. HSQC spectrum (DMSO, 600MHz) of compound (±1)                                              | .5 |
| Fig.S6. HMBC spectrum (DMSO, 600MHz) of compound (±1)                                              | .5 |
| Fig.S7. NOESY spectrum of (DMSO, 600MHz) compound (±1)                                             | .6 |
| Fig.S8. UV spectrum of (+)-1 in MeOH                                                               | .6 |
| Fig.S9. Experimental ECD spectrum of (+)-1                                                         | .7 |
| Fig.S11. Experimental ECD spectrum of (-)-1                                                        | .8 |
| Fig.S12. IR spectrum of compound (±1)                                                              | .8 |
| Fig.S13. HR-ESI-MS spectrum of compound (2)                                                        | .9 |
| Fig.S14. <sup>1</sup> H- NMR spectrum (CD <sub>3</sub> OD, 600MHz) of compound (4)                 | .9 |
| Fig.S15. DEPT 135 and <sup>13</sup> C-NMR spectrum (CD <sub>3</sub> OD, 150MHz) of compound (4)1   | 0  |
| Fig.S16. <sup>1</sup> H- <sup>1</sup> H COSY spectrum (CD <sub>3</sub> OD, 600MHz) of compound (4) | 0  |
| Fig.S17. HSQC spectrum (CD <sub>3</sub> OD, 600MHz) of compound (4)                                | 1  |
| Fig.S18. HMBC spectrum (CD <sub>3</sub> OD, 600MHz) of compound (2)                                | 1  |
| Table S1.deviations in NMR data between natural and synthetic <sup>[1]</sup> samples of 11         | 12 |
| Table S2. ECD Computational Result.    1                                                           | 12 |



Fig.S1. HR-ESI-MS spectrum of (±1)



Fig.S2. <sup>1</sup>H- NMR spectrum (DMSO, 600MHz) of (±1)



Fig.S3. DEPT 135 and <sup>13</sup>C-NMR spectrum (DMSO, 600MHz) of compound (±1)



Fig.S4.<sup>1</sup>H-<sup>1</sup>H COSY spectrum (DMSO, 600MHz) of compound (±1)



Fig.S5. HSQC spectrum (DMSO, 600MHz) of compound (±1)



Fig.S6. HMBC spectrum (DMSO, 600MHz) of compound (±1)



Fig.S7. NOESY spectrum of (DMSO, 600MHz) compound (±1)



Fig.S8. UV spectrum of (+)-1 in MeOH



Fig.S10. UV spectrum of (-)-1 in MeOH



Fig.S11. Experimental ECD spectrum of (-)-1



Fig.S12. IR spectrum of compound (±1)



Fig.S13. HR-ESI-MS spectrum of compound (2)



Fig.S14. <sup>1</sup>H- NMR spectrum (CD<sub>3</sub>OD, 600MHz) of compound (4)



Fig.S16. <sup>1</sup>H-<sup>1</sup>H COSY spectrum (CD<sub>3</sub>OD, 600MHz) of compound (4)



Fig.S17. HSQC spectrum (CD<sub>3</sub>OD, 600MHz) of compound (4)



Fig.S18. HMBC spectrum (CD<sub>3</sub>OD, 600MHz) of compound (2)

| No.            | $\delta_{\rm C}$ , type (N.S) | $\delta_{\rm C}$ , type (S.S) | $\Delta\delta/ppm$ | $\delta_{\rm C}$ , type (N.S)                               | $\delta_{\rm C}$ , type (S.S)                               | Δδ/ppm |
|----------------|-------------------------------|-------------------------------|--------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------|
| 1              | 51.3, C                       | 51.3, C                       | 0.0                | × /                                                         |                                                             |        |
| 2              | 66.4, CH <sub>2</sub>         | 66.4, CH <sub>2</sub>         | 0.0                | 4.21, d, ( <i>J</i> = 10.1);<br>4.61, d, ( <i>J</i> = 10.1) | 4.22, d, ( <i>J</i> = 10.1);<br>4.61, d, ( <i>J</i> = 10.1) | +0.01  |
| 4              | 176.5, C                      | 176.4, C                      | -0.1               |                                                             |                                                             |        |
| 5              | 60.1, C                       | 60.0, C                       | -0.1               |                                                             |                                                             |        |
| 6              | 59.6, C                       | 59.6, C                       | 0.0                |                                                             |                                                             |        |
| 7              | 65.6, CH <sub>2</sub>         | 65.6, CH <sub>2</sub>         | 0.0                | 3.74, d, ( <i>J</i> = 10.0);<br>3.82, d, ( <i>J</i> = 10.0) | 3.75, d, ( <i>J</i> = 10.0);<br>3.82, d, ( <i>J</i> = 10.0) | +0.01  |
| 9              | 67.8, CH <sub>2</sub>         | 67.8, CH <sub>2</sub>         | 0.0                | 4.28, d, ( <i>J</i> = 16.1);<br>4.38, d, ( <i>J</i> = 16.1) | 4.29, d, ( <i>J</i> = 16.1);<br>4.38, d, ( <i>J</i> = 16.1) | +0.01  |
| 10             | 136.9, C                      | 136.9, C                      | 0.0                |                                                             |                                                             |        |
| 11             | 140.1, C                      | 140.1, C                      | 0.0                |                                                             |                                                             |        |
| 12             | 190.1, C                      | 190.9, C                      | +0.8               |                                                             |                                                             |        |
| 13             | 69.1, CH                      | 69.1, CH                      | 0.0                | 3.08, s                                                     | 3.08, s                                                     | 0.0    |
| 14             | 88.4, C                       | 88.4, C                       | 0.0                |                                                             |                                                             |        |
| 15             | 193.3, C                      | 193.2, C                      | -0.1               |                                                             |                                                             |        |
| 16             | 146.5, C                      | 146.4, C                      | -0.1               |                                                             |                                                             |        |
| 17             | 134.7, C                      | 134.6, C                      | -0.1               |                                                             |                                                             |        |
| 18             | 13.8, CH <sub>3</sub>         | 13.8, CH <sub>3</sub>         | 0.0                | 1.96, s                                                     | 1.96, s                                                     | 0.0    |
| 19             | 17.5, CH <sub>3</sub>         | 17.5, CH <sub>3</sub>         | 0.0                | 1.03, s                                                     | 1.03, s                                                     | 0.0    |
| 11 <b>-</b> OH |                               |                               |                    | 8.97, s                                                     | 8.93, s                                                     | -0.04  |
| 14-OH          |                               |                               |                    | 6.27, s                                                     | 6.24, s                                                     | +0.03  |
| 16-OH          |                               |                               |                    | 8.84, s                                                     | 8.93, s                                                     | +0.09  |
| N.S: nat       | ural sample; S                | S.S: synthetic                | c sample.          |                                                             |                                                             |        |

Table S1.deviations in NMR data between natural and synthetic<sup>[1]</sup> samples of 1

#### Table S2. ECD Computational Result.

**S2.1** Gibbs free energies and Boltzmann-population of low-energy comformers of 1*R*,5*R*,6*S*,13*R*,14*R*-1

| Conformers of 1D 5D 6S 12D 14D 1    | In MeOH                 |                    |  |  |
|-------------------------------------|-------------------------|--------------------|--|--|
| Comonners of 17, 57, 05, 157, 147-1 | $\Delta G^{\mathrm{a}}$ | P (%) <sup>b</sup> |  |  |
| 1a                                  | 0.0                     | 83.3               |  |  |
| 1b                                  | 2.12                    | 3.6                |  |  |
| 1c                                  | 2.62                    | 5.7                |  |  |
| 1d                                  | 3.12                    | 7.4                |  |  |

 $\Delta G^{a}$ , B3LYP/ 6-31+G (d, p), in kcal/mol. <sup>b</sup>Boltzmann-population.

# **S2.2** Cartesian coordinates for the low-energy optimized conformers of 3*R*-1 at B3LYP/6-31+G (d, p) level of theory in MeOH.

| Conformer <b>1a</b> |      | Standard Orientation(Ångstroms) |           |           |           |
|---------------------|------|---------------------------------|-----------|-----------|-----------|
| Center<br>Number    | Atom | Туре                            | X         | Y         | Z         |
| 1                   | 6    | 0                               | -2.241719 | -0.288180 | -1.025922 |
| 2                   | 6    | 0                               | -1.814560 | 0.896912  | -0.207483 |
| 3                   | 6    | 0                               | -0.476924 | 0.740643  | 0.633543  |
| 4                   | 6    | 0                               | 0.191382  | 1.062678  | -0.746580 |
| 5                   | 6    | 0                               | 0.336929  | -0.354079 | -1.347946 |
| 6                   | 6    | 0                               | -1.031004 | -0.932142 | -1.727269 |

| 7  | 6 | 0 | 1.506639  | 1.777816  | -0.753392 |
|----|---|---|-----------|-----------|-----------|
| 8  | 6 | 0 | 2.681302  | 0.868296  | -0.366537 |
| 9  | 6 | 0 | 2.448892  | -0.524237 | -0.081031 |
| 10 | 6 | 0 | 1.038103  | -1.073752 | -0.137304 |
| 11 | 8 | 0 | 1.657428  | 2.975606  | -1.001391 |
| 12 | 8 | 0 | -3.399717 | -0.665895 | -1.196925 |
| 13 | 8 | 0 | -1.150418 | -1.857996 | -2.531923 |
| 14 | 6 | 0 | 0.882776  | -2.607136 | -0.138346 |
| 15 | 8 | 0 | -0.419380 | -2.868273 | 0.517749  |
| 16 | 6 | 0 | -0.877232 | -1.759916 | 1.209259  |
| 17 | 6 | 0 | 0.131598  | -0.612934 | 1.098058  |
| 18 | 6 | 0 | -2.762389 | 1.732246  | 0.598435  |
| 19 | 8 | 0 | -1.879635 | 2.596303  | 1.379470  |
| 20 | 8 | 0 | -1.031106 | 1.722086  | -1.243217 |
| 21 | 8 | 0 | 3.847180  | 1.376609  | -0.296367 |
| 22 | 6 | 0 | 3.619912  | -1.386728 | 0.266283  |
| 23 | 8 | 0 | -1.933560 | -1.748996 | 1.828067  |
| 24 | 6 | 0 | 0.892304  | -0.545569 | 2.443353  |
| 25 | 6 | 0 | -0.637269 | 1.878822  | 1.671805  |
| 26 | 1 | 0 | 0.966148  | -0.389753 | -2.241604 |
| 27 | 1 | 0 | 0.815450  | -3.037213 | -1.138068 |
| 28 | 1 | 0 | 1.651279  | -3.119785 | 0.441758  |
| 29 | 1 | 0 | -3.376921 | 1.088117  | 1.241320  |
| 30 | 1 | 0 | -3.399198 | 2.375262  | -0.008858 |
| 31 | 1 | 0 | 3.743664  | -2.203417 | -0.459599 |
| 32 | 1 | 0 | 4.531413  | -0.787445 | 0.273076  |
| 33 | 1 | 0 | 3.500204  | -1.859907 | 1.250797  |
| 34 | 1 | 0 | 1.439420  | -1.477079 | 2.621811  |
| 35 | 1 | 0 | 1.609312  | 0.280515  | 2.459315  |
| 36 | 1 | 0 | 0.188620  | -0.418523 | 3.269954  |
| 37 | 1 | 0 | -0.693546 | 1.458534  | 2.680429  |
| 38 | 1 | 0 | 0.165374  | 2.618702  | 1.632425  |

| Conformer 1b     |      | Standard Orientation(Ångstroms) |           |           |           |
|------------------|------|---------------------------------|-----------|-----------|-----------|
| Center<br>Number | Atom | Туре                            | X         | Y         | Z         |
| 1                | 6    | 0                               | -2.241719 | -0.288180 | -1.025922 |
| 2                | 6    | 0                               | -1.814560 | 0.896912  | -0.207483 |
| 3                | 6    | 0                               | -0.476924 | 0.740643  | 0.633543  |
| 4                | 6    | 0                               | 0.191382  | 1.062678  | -0.746580 |
| 5                | 6    | 0                               | 0.336929  | -0.354079 | -1.347946 |
| 6                | 6    | 0                               | -1.031004 | -0.932142 | -1.727269 |
| 7                | 6    | 0                               | 1.506639  | 1.777816  | -0.753392 |
| 8                | 6    | 0                               | 2.681302  | 0.868296  | -0.366537 |
| 9                | 6    | 0                               | 2.448892  | -0.524237 | -0.081031 |
| 10               | 6    | 0                               | 1.038103  | -1.073752 | -0.137304 |

| 11 | 8 | 0 | 1.657428  | 2.975606  | -1.001391 |
|----|---|---|-----------|-----------|-----------|
| 12 | 8 | 0 | -3.399717 | -0.665895 | -1.196925 |
| 13 | 8 | 0 | -1.150418 | -1.857996 | -2.531923 |
| 14 | 6 | 0 | 0.882776  | -2.607136 | -0.138346 |
| 15 | 8 | 0 | -0.419380 | -2.868273 | 0.517749  |
| 16 | 6 | 0 | -0.877232 | -1.759916 | 1.209259  |
| 17 | 6 | 0 | 0.131598  | -0.612934 | 1.098058  |
| 18 | 6 | 0 | -2.762389 | 1.732246  | 0.598435  |
| 19 | 8 | 0 | -1.879635 | 2.596303  | 1.379470  |
| 20 | 8 | 0 | -1.031106 | 1.722086  | -1.243217 |
| 21 | 8 | 0 | 3.847180  | 1.376609  | -0.296367 |
| 22 | 6 | 0 | 3.619912  | -1.386728 | 0.266283  |
| 23 | 8 | 0 | -1.933560 | -1.748996 | 1.828067  |
| 24 | 6 | 0 | 0.892304  | -0.545569 | 2.443353  |
| 25 | 6 | 0 | -0.637269 | 1.878822  | 1.671805  |
| 26 | 1 | 0 | 0.966148  | -0.389753 | -2.241604 |
| 27 | 1 | 0 | 0.815450  | -3.037213 | -1.138068 |
| 28 | 1 | 0 | 1.651279  | -3.119785 | 0.441758  |
| 29 | 1 | 0 | -3.376921 | 1.088117  | 1.241320  |
| 30 | 1 | 0 | -3.399198 | 2.375262  | -0.008858 |
| 31 | 1 | 0 | 3.743664  | -2.203417 | -0.459599 |
| 32 | 1 | 0 | 4.531413  | -0.787445 | 0.273076  |
| 33 | 1 | 0 | 3.500204  | -1.859907 | 1.250797  |
| 34 | 1 | 0 | 1.439420  | -1.477079 | 2.621811  |
| 35 | 1 | 0 | 1.609312  | 0.280515  | 2.459315  |
| 36 | 1 | 0 | 0.188620  | -0.418523 | 3.269954  |
| 37 | 1 | 0 | -0.693546 | 1.458534  | 2.680429  |
| 38 | 1 | 0 | 0.165374  | 2.618702  | 1.632425  |

| Conformer 1c     |      | Standard Orientation(Ångstroms) |           |           |           |
|------------------|------|---------------------------------|-----------|-----------|-----------|
| Center<br>Number | Atom | Туре                            | X         | Y         | Z         |
| 1                | 6    | 0                               | -2.241719 | -0.288180 | -1.025922 |
| 2                | 6    | 0                               | -1.814560 | 0.896912  | -0.207483 |
| 3                | 6    | 0                               | -0.476924 | 0.740643  | 0.633543  |
| 4                | 6    | 0                               | 0.191382  | 1.062678  | -0.746580 |
| 5                | 6    | 0                               | 0.336929  | -0.354079 | -1.347946 |
| 6                | 6    | 0                               | -1.031004 | -0.932142 | -1.727269 |
| 7                | 6    | 0                               | 1.506639  | 1.777816  | -0.753392 |
| 8                | 6    | 0                               | 2.681302  | 0.868296  | -0.366537 |
| 9                | 6    | 0                               | 2.448892  | -0.524237 | -0.081031 |
| 10               | 6    | 0                               | 1.038103  | -1.073752 | -0.137304 |
| 11               | 8    | 0                               | 1.657428  | 2.975606  | -1.001391 |
| 12               | 8    | 0                               | -3.399717 | -0.665895 | -1.196925 |
| 13               | 8    | 0                               | -1.150418 | -1.857996 | -2.531923 |
| 14               | 6    | 0                               | 0.882776  | -2.607136 | -0.138346 |
| 15               | 8    | 0                               | -0.419380 | -2.868273 | 0.517749  |

| 16 | 6 | 0 | -0.877232 | -1.759916 | 1.209259  |
|----|---|---|-----------|-----------|-----------|
| 17 | 6 | 0 | 0.131598  | -0.612934 | 1.098058  |
| 18 | 6 | 0 | -2.762389 | 1.732246  | 0.598435  |
| 19 | 8 | 0 | -1.879635 | 2.596303  | 1.379470  |
| 20 | 8 | 0 | -1.031106 | 1.722086  | -1.243217 |
| 21 | 8 | 0 | 3.847180  | 1.376609  | -0.296367 |
| 22 | 6 | 0 | 3.619912  | -1.386728 | 0.266283  |
| 23 | 8 | 0 | -1.933560 | -1.748996 | 1.828067  |
| 24 | 6 | 0 | 0.892304  | -0.545569 | 2.443353  |
| 25 | 6 | 0 | -0.637269 | 1.878822  | 1.671805  |
| 26 | 1 | 0 | 0.966148  | -0.389753 | -2.241604 |
| 27 | 1 | 0 | 0.815450  | -3.037213 | -1.138068 |
| 28 | 1 | 0 | 1.651279  | -3.119785 | 0.441758  |
| 29 | 1 | 0 | -3.376921 | 1.088117  | 1.241320  |
| 30 | 1 | 0 | -3.399198 | 2.375262  | -0.008858 |
| 31 | 1 | 0 | 3.743664  | -2.203417 | -0.459599 |
| 32 | 1 | 0 | 4.531413  | -0.787445 | 0.273076  |
| 33 | 1 | 0 | 3.500204  | -1.859907 | 1.250797  |
| 34 | 1 | 0 | 1.439420  | -1.477079 | 2.621811  |
| 35 | 1 | 0 | 1.609312  | 0.280515  | 2.459315  |
| 36 | 1 | 0 | 0.188620  | -0.418523 | 3.269954  |
| 37 | 1 | 0 | -0.693546 | 1.458534  | 2.680429  |
| 38 | 1 | 0 | 0.165374  | 2.618702  | 1.632425  |

| Confor           | mer 1d | Standard Orientation(Ångstroms) |           |           |           |
|------------------|--------|---------------------------------|-----------|-----------|-----------|
| Center<br>Number | Atom   | Туре                            | X         | Y         | Z         |
| 1                | 6      | 0                               | -2.241719 | -0.288180 | -1.025922 |
| 2                | 6      | 0                               | -1.814560 | 0.896912  | -0.207483 |
| 3                | 6      | 0                               | -0.476924 | 0.740643  | 0.633543  |
| 4                | 6      | 0                               | 0.191382  | 1.062678  | -0.746580 |
| 5                | 6      | 0                               | 0.336929  | -0.354079 | -1.347946 |
| 6                | 6      | 0                               | -1.031004 | -0.932142 | -1.727269 |
| 7                | 6      | 0                               | 1.506639  | 1.777816  | -0.753392 |
| 8                | 6      | 0                               | 2.681302  | 0.868296  | -0.366537 |
| 9                | 6      | 0                               | 2.448892  | -0.524237 | -0.081031 |
| 10               | 6      | 0                               | 1.038103  | -1.073752 | -0.137304 |
| 11               | 8      | 0                               | 1.657428  | 2.975606  | -1.001391 |
| 12               | 8      | 0                               | -3.399717 | -0.665895 | -1.196925 |
| 13               | 8      | 0                               | -1.150418 | -1.857996 | -2.531923 |
| 14               | 6      | 0                               | 0.882776  | -2.607136 | -0.138346 |
| 15               | 8      | 0                               | -0.419380 | -2.868273 | 0.517749  |
| 16               | 6      | 0                               | -0.877232 | -1.759916 | 1.209259  |
| 17               | 6      | 0                               | 0.131598  | -0.612934 | 1.098058  |
| 18               | 6      | 0                               | -2.762389 | 1.732246  | 0.598435  |
| 19               | 8      | 0                               | -1.879635 | 2.596303  | 1.379470  |

| 20 | 8 | 0 | -1.031106 | 1.722086  | -1.243217 |
|----|---|---|-----------|-----------|-----------|
| 21 | 8 | 0 | 3.847180  | 1.376609  | -0.296367 |
| 22 | 6 | 0 | 3.619912  | -1.386728 | 0.266283  |
| 23 | 8 | 0 | -1.933560 | -1.748996 | 1.828067  |
| 24 | 6 | 0 | 0.892304  | -0.545569 | 2.443353  |
| 25 | 6 | 0 | -0.637269 | 1.878822  | 1.671805  |
| 26 | 1 | 0 | 0.966148  | -0.389753 | -2.241604 |
| 27 | 1 | 0 | 0.815450  | -3.037213 | -1.138068 |
| 28 | 1 | 0 | 1.651279  | -3.119785 | 0.441758  |
| 29 | 1 | 0 | -3.376921 | 1.088117  | 1.241320  |
| 30 | 1 | 0 | -3.399198 | 2.375262  | -0.008858 |
| 31 | 1 | 0 | 3.743664  | -2.203417 | -0.459599 |
| 32 | 1 | 0 | 4.531413  | -0.787445 | 0.273076  |
| 33 | 1 | 0 | 3.500204  | -1.859907 | 1.250797  |
| 34 | 1 | 0 | 1.439420  | -1.477079 | 2.621811  |
| 35 | 1 | 0 | 1.609312  | 0.280515  | 2.459315  |
| 36 | 1 | 0 | 0.188620  | -0.418523 | 3.269954  |
| 37 | 1 | 0 | -0.693546 | 1.458534  | 2.680429  |
| 38 | 1 | 0 | 0.165374  | 2.618702  | 1.632425  |

### References

[1] Ellerbrock, P.; Armanino, N.; Ilg, M. K.; Webster, R.; & Trauner, D. An eight-step synthesis of Epicolactone reveals its biosynthetic origin. *Nature Chemistry*. 2015, 7(11), 879-882.