Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

> Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

A bi-mode RRS and colorimetric alkaline phosphatase assay based on in situ ascorbic acid-

induced signal generation from manganese dioxide nanosheets†

Shiyu Liu‡a, Xiaoxiao Song‡a, Jinping Li^b, Jiahong Zhoua, Weidan Na*,a and Dawei Deng*,a,b

a Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.

b Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China. E-mail: dengdawei@cpu.edu.cn

† Electronic supplementary information (ESI) available. See DOI: 10.1039/x0xx00000x

[‡] These authors contributed equally to this work.

* Corresponding author

Fig. S1 FT-IR spectrum of the MnO_2 nanosheets.

Fig. S2 Absorbance and RRS Intensity of MnO_2 nanosheets exhibited concentration dependence. (In our inspection system).

Fig. S3 UV-vis absorption spectra of MnO_2 nanosheets (50 mg L⁻¹); MnO_2 (50mg L⁻¹) + AAP (2 mmol L⁻¹); MnO_2 (50 mg) + AAP (2 mmol L⁻¹) + ALP (200 U L⁻¹); ALP; AAP; and AAP + ALP.

Fig. S4 (A) RRS spectra of MnO_2 nanosheets with different concentration of AA (0, 1.0, 5.0, 10.0, 20.0, 40.0, 60.0, 80.0, 100.0, 120.0, 140.0, 160.0, 180.0 and 200 nmol L⁻¹). The excitation wavelength was 600 nm. (B) The linear relationship of RRS intensity vs the level of AA. Reaction system: MnO_2 nanosheets,1 mg L⁻¹; 10 mmol L⁻¹ Phosphate buffer (pH,7.4).

Fig. S5 Ratio of $(A_0-A)/A_0$ (A) and $(I_0-I)/I_0$ (B) as a function of incubation time and AAP concentration. Reaction system A: 50 mg L⁻¹ MnO₂ nanosheets and 200 U L⁻¹ ALP; 10 mmol L⁻¹ Phosphate buffer (pH, 7.4). Reaction system B: 1 mg L⁻¹ MnO₂ nanosheets and 200 mU L⁻¹ ALP; 10 mmol L⁻¹ ALP; 10 mmol L⁻¹ Phosphate buffer (pH, 7.4).

Fig. S6 Ratio of $(I_0-I)/I_0$ responses of different reducing substances on the selective detection of ALP activity. as a function of incubation time and AAP concentration. Reaction system: 100 µmol L-1 of Cys, 100 µmol L-1 of GSH or 100 pmol L-1 DA; 10 mg L-1 NEM; 1 mg L-1 MnO2 nanosheets and 200 mU L-1 ALP; 10 mmol L-1 Phosphate buffer (pH, 7.4).

Method	Linear range	LOD	Reference
Colorimetric (MVCV)	0.5-25 U L ⁻¹	0.1 U L^{-1}	41
Colorimetric (PDA liposomes)	0-100 U L ⁻¹	5.4 U L ⁻¹	42
Fluorescence (Naphthalimide)	$0-200 \text{ U L}^{-1}$	0.25 U L^{-1}	43
Fluorescence (Carbon dots)	2-100 U L ⁻¹	0.55 U L^{-1}	44
Electrochemical (CdS@GR-CoOOH)	10-300 U L ⁻¹	1.5 U L^{-1}	45
Electrochemical (TNA/QD PEC)	0.2-15 U L-1	0.15 U L ⁻¹	46
Colorimetric (MnO ₂ nanosheets)	0.5-30.0; 30.0-140.0 U L ⁻¹	0.16 U L ⁻¹	This work
RRS (MnO ₂ nanosheets)	0.5-150 mU L ⁻¹	0.17 mU L ⁻¹	This work

Table S1. Comparison of analytical performances for ALP assay via different methods.