Supporting information

Novel rhodamine dye with large stokes shifts by fusing the 1,4-diethylpiperazine moiety and its applications in fast detection of Cu^{2+}

Jin Gong^{†, ‡}, Chang Liu[†], Xiaojie Jiao[†], Song He[†], Liancheng Zhao^{†, ‡}, Xianshun Zeng^{*, †, ‡}

[†] Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China

[‡] School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China

*E-mail: xshzeng@tjut.edu.cn

Table of contents

Figure S1: Absorption and fluorescence spectra of JRQ	S3
Table S1: Photophysical properties of JRQ in different solvents	S3
Figure S2: MTT assay of JRQ	
Figure S3: Cell imaging of JRQ	S3
Table S2: Overlap coefficients and Pearson's coefficients JRQ	S4
Figure S4: Absorption spectra changes of JRQN towards metal ions	S4
Figure S5: Absorption and emission spectra of JRQN upon addition of Hg ²⁺	S4
Figure S6: HRMS of JRQN in the presence of Cu ²⁺ ions	S4
Figure S7: Absorption spectra changes of JRQN	S4
Figure S8: MTT assay of JRQN	S5
Table S3: Overlap coefficients and Pearson's coefficients of JRQN	S5
¹ H, ¹³ C NMR spectra and HRMS of compounds	S6-S8

Fig. S1 Absorption a) and fluorescence b) spectra of JRQ in different solvents.

Solvent	λ _{Abs} (nm)	λ _{em} (nm)	λ _{ex} (nm)	ϵ_{b} (M ⁻¹ cm ⁻¹)	Stocks Shift (nm)	Φ^{a}
DCM	585	668	613	19500	55	0.54
CH ₃ CN	585	654	593	35700	61	0.05
H_2O	583	654	585	42000	69	0.18
DMSO	590	662	600	14200	62	0.20
EtOH	585	655	592	32800	63	0.09

Table S1. Photophysical properties of JRQ in different solvents.

^{*a*} Relative fluorescence quantum yield estimated by using Nile Blue ($\Phi_B = 0.27$ in ethanol) as a fluorescence standard.

Fig. S2 MTT assay of JRQ.

Fig. S3 Fluorescent images of HeLa cells incubated with JRQ (1 μ M) for 30 min. λ_{ex} = 559 nm, λ_{em} = 618–718 nm.

Regents	Overlap	Pearson's
Mito-Tracker Green	0.92	0.91
Lyso-Tracker Green	0.80	0.78
ER-Tracker Green	0.73	0.72
Golgi-Tracker Green	0.80	0.79

 Table. S2 Overlap coefficients and Pearson's coefficients of commercial targeting regents and JRQ

Fig. S4 Absorption spectra response of **JRQN** (10 μ M) upon addition of different species (100 μ M). 1) Ag⁺; 2) Al³⁺; 3) Ca²⁺ (10 mM); 4) Cd²⁺; 5) Co²⁺; 6) Cr³⁺; 7) Cu²⁺; 8) Fe²⁺; 9) Fe³⁺; 10) Pd²⁺; 11) K⁺ (10 mM); 12) Li⁺ (10 mM); 13) Mg²⁺ (10 mM); 14) Mn²⁺; 15) Na⁺; 16) Ni²⁺; 17) Zn²⁺.

Fig. S5 Absorption and emission spectra response of JRQN (10 μ M) upon addition of Hg²⁺ (100 μ M).

Fig. S6 HRMS of JRQN in the presence of Cu^{2+} .

Fig. S7 a) The absorption spectra changes of **JRQN** (10 μ M) treated with increasing concentrations of Cu²⁺ (0–105 μ M); b) The plot of the absorption intensities at 594 nm versus the equiv. of Cu²⁺.

Fig. S8 MTT assay of JRQN.

 Table. S3 Overlap coefficients and Pearson's coefficients of commercial targeting regents and JRQN

Regents	Overlap	Pearson's
Mito-Tracker Green	0.93	0.92
Lyso-Tracker Green	0.84	0.83
ER-Tracker Green	0.65	0.64
Golgi-Tracker Green	0.60	0.59

Fig. S9 ¹H NMR spectra of JRQ in CDCl₃

Fig. S10 13 C NMR spectra of JRQ in CDCl₃

Fig. S11 HRMS spectra of JRQ

Fig. S12 ¹H NMR spectra of JRQN in CDCl₃

Fig. S13 ¹³C NMR spectra of JRQN in CDCl₃

Fig. S14 HRMS spectra of JRQN