## **Electronic Supplementary Information**

## **One-step production of N-O-P-S co-doped porous carbon from Bean worm for supercapacitors with high performance**<sup>†</sup> Zhentao Bian,<sup>\*a,b</sup> Chunjie Wu,<sup>a</sup> Chenglong Yuan,<sup>a</sup> Ying Wang,<sup>a</sup>

Guangzhen Zhao,<sup>a</sup> Hongyan Wang,<sup>a</sup> Yong Xie,<sup>a,b</sup> Cong Wang,<sup>a</sup> Guang Zhu<sup>a</sup> and Chong Chen<sup>\*a</sup>

<sup>a</sup> Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, PR China

<sup>b</sup> Institute of fine chemical products development, Suzhou University,

Suzhou 234000, PR China

\*Corresponding author:

E-mail: zhentaobian@126.com (Zhentao Bian);

chongchen\_li@163.com (Chong Chen)



Fig. S1 SEM images of (a, b) precursor, (c, d, e, f) BWC, (g, h)  $BWPC_{1/4}$ , (i, j)  $BWPC_{1/3}$  and (k, l)  $BWPC_{1/2}$ .



Fig. S2 High-resolution transmission electron microscopy (HRTEM) images of  $BWPC_{1/3}$ .



**Fig. S3** (a) Nitrogen adsorption-desorption isotherms and (d) pore size distributions of BWC.



**Fig. S4** XPS spectra (a) and deconvolved C1s spectra (b, g, l), N 1s spectra (c, h, m) O 1s spectra (d, i, n), P 2p spectra (e, j, o) and S 2p (f, k, p) of BWC,  $BWPC_{1/2}$  and  $BWPC_{1/4}$ .

| Sample                          | BWC             | BWPC <sub>1/4</sub> | BWPC <sub>1/3</sub> | BWPC <sub>1/2</sub> |  |  |  |
|---------------------------------|-----------------|---------------------|---------------------|---------------------|--|--|--|
| C species                       | Content (at. %) |                     |                     |                     |  |  |  |
| C=C                             | 88.52           | 91.68               | 87.53               | 87.0                |  |  |  |
| C-O/C-N                         | 11.48           | 8.32 12.47          |                     | 13.0                |  |  |  |
| N species                       | Content (at. %) |                     |                     |                     |  |  |  |
| N-6                             | 33.36           | 9.5 6.2             |                     | 3.25                |  |  |  |
| N-5                             | 12.96           | 19.72               | 36.25               | 15.02               |  |  |  |
| N-Q                             | 51.37           | 58.19               | 50.18               | 75.05               |  |  |  |
| N-X                             | 2.31            | 12.6 7.38           |                     | 6.67                |  |  |  |
| O species                       | Content (at. %) |                     |                     |                     |  |  |  |
| С=О/Р=О                         | 32.37           | 11.59               | 11.41               | 17.93               |  |  |  |
| С-О/С-О-Р                       | 52.3            | 76.11               | 76.93               | 72.87               |  |  |  |
| С-ООН                           | 15.33           | 12.3 11.66          |                     | 9.2                 |  |  |  |
| P species                       | Content (at. %) |                     |                     |                     |  |  |  |
| PO <sub>4</sub>                 | 12.0            | 66.67               | 34.48               | 40.0                |  |  |  |
| (PO <sub>3</sub> ) <sub>n</sub> | 88.0            | 33.33               | 65.52               | 60.0                |  |  |  |
| S species                       | Content (at. %) |                     |                     |                     |  |  |  |
| S-1                             | 27.4            | 62.75               | 16.52               | 41.21               |  |  |  |
| S-2                             | 41.1            | 1.96                | 37.43               | 11.18               |  |  |  |
| S-3                             | 31.5            | 35.29               | 46.05               | 47.6                |  |  |  |

**Table S1** The elemental content of C, N, O, P, and S in BWC and BWPCs.



**Fig. S5** Cyclic voltammograms curves for carbon electrodes obtained at the indicated conditions: (a)  $BWPC_{1/4}$  and (c)  $BWPC_{1/2}$ . Galvanostatic charge-discharge curve for carbon electrodes obtained at the indicated conditions: (b)  $BWPC_{1/4}$  and (d)  $BWPC_{1/2}$ . (e) equivalent circuit.

| Sample              | Specific capacitance<br>(C, F g <sup>-1</sup> ) | $R_s(\Omega)$ | $R_{ct}(\Omega)$ | Energy density<br>(E/Wh kg <sup>-1</sup> ) | Power density<br>(P/W kg <sup>-1</sup> ) |
|---------------------|-------------------------------------------------|---------------|------------------|--------------------------------------------|------------------------------------------|
| BWC                 | -                                               | 0.87          | 22.01            | -                                          | -                                        |
| BWPC <sub>1/4</sub> | 221.4 at 1A g <sup>-1</sup>                     | 0.81          | 7.75             | -                                          | -                                        |
| BWPC <sub>1/3</sub> | 313.8 at 1A g <sup>-1</sup>                     | 0.76          | 3.11             | 27.5                                       | 200                                      |
| BWPC <sub>1/2</sub> | 242.1 at 1A g <sup>-1</sup>                     | 0.84          | 5.46             | -                                          | -                                        |

Table S2 Electrochemical features of BW-derived porous carbon supercapacitor.