Electronic Supplementary Information

Iron-catalyzed Tandem Reaction of C-Se Bond Coupling/Selenosulfonation of Indols with Benzeneselenols

Senling Guan, Yue Chen, Hongjie Wu and Runsheng Xu*

Department of Biology and Environment, Jiyang College of Zhejiang Agriculture and Forestry University, Zhejiang 311800, China;

* Correspondence: 20140041 @zafu.edu.cn; Tel.: +86-0575-87761234

Contents

Experimental Details	2
Mechanism Study Analytical Data of 3, 5	2 4
Spectrums of ESI HR-MS	44

Experimental Details

General Information

All reagents used in experiment were obtained from commercial sources and used without further purification. Solvents for chromatography were technical grade and distilled prior for using. Solvent mixtures were understood as volume/volume. Chemical yields refer to pure isolated substances. Catalysts were purchased from Alfa Aesar (Analytical reagent). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates with F-254 indicator, visualized by irradiation with UV light.

The NMR spectra were recorded on Bruker AVANCE III-400 spectrometry at 400 MHz and 100 MHz for ¹H and ¹³C NMR in CDCl₃, respectively. The NMR chemical shift was reported in ppm relative to 7.26 and 77 ppm of CDCl₃ as the standards of ¹H and ¹³C NMR, respectively. The NMR spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard and coupling constants were reported in Hertz (Hz). Multiplicities were indicated s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). The mass spectra were performed on a Bruker Esquire 3000plus mass spectrometer equipped with ESI interface and ion trap analyzer. The ESI HR-MS were tested on Bruker 7-tesla FT-ICR MS equipped with an electrospray source.

General procedure for preparation of 3 and 5

A mixture of indol **1a** (0.5 mmol, 59 mg), benzeneselenol **2a** (0.75 mmol, 118 mg), FeCl₃ (5 mol%, 4 mg) and DBU (2 equiv, 152 mg), in 1,4-dioxane (5 mL) was stirred under a O_2 atmosphere. After the reaction mixture was stirred at 80 °C for 10 h, it was allowed to cool to ambient temperature. Then the mixture was quenched with saturated salt water (10 mL), and the solution was extracted with ethyl acetate (3 × 10 mL). The organic layers were combined and dried by sodium sulfate and concentrated in vacuo. The pure product 2-benzeneselenonyl-1H-indole **3a** (126 mg, 83% yield) was obtained by flash column chromatography on silica gel.

Mechanism Study

Procedure for preparation of 7

A mixture of indol **1a** (0.5 mmol, 59 mg), benzeneselenol **2a** (0.75 mmol, 118 mg), CuI (10 mol%, 19 mg) and Cs_2CO_3 (2 equiv, 326 mg), in DMSO (5 mL) was stirred under a N₂ atmosphere. After the reaction mixture was stirred at 110 °C for 12 h, it was allowed to cool to ambient temperature. Then the mixture was quenched with saturated salt water (10 mL), and the solution was extracted with ethyl acetate (3 × 10 mL). The organic layers were combined and dried by sodium sulfate and concentrated in vacuo. The pure product 2-phenylselanyl-*1H*-indole **7** (Yellow solid, m.p. 155-157 °C, 116 mg, 85%) was obtained by flash column chromatography on silica gel.

Synthesis Method of 8

Benzeneselenol (79 mg, 0.5 mmol) was dissolved in D₂O (5 mL) in the presence of K₂CO₃(138 mg, 1.0 mmol). The reaction was stopped after 10 h, and the mixture of **8** was analyzed by ¹³C NMR spectroscopy. ¹³C NMR (101 MHz, CDCl₃): δ 130.45, 128.12, 128.13, 127.01, 127.00.

KIE Experiment

A mixture of indol **1a** (0.5 mmol, 59 mg), benzeneselenol **2a** (0.75 mmol, 118 mg) or **8** (0.75 mmol, 122 mg), FeCl₃ (5 mol%, 4 mg) and DBU (2 equiv, 152 mg), in 1,4-dioxane (5 mL) was stirred under a O₂ atmosphere. After the reaction mixture was stirred at 80 °C for 10 h, it was allowed to cool to ambient temperature. Then the mixture was quenched with saturated salt water (10 mL), and the solution was extracted with ethyl acetate (3 × 10 mL). The organic layers were combined and dried by sodium sulfate and concentrated in vacuo. The pure product **3a** and **9** was obtained by flash column chromatography on silica gel. The KIE value of k_H/k_D = 1.3 was determined based on the product yield of **3a** (126 mg, 83%) and **9** (99 mg, 64%).

9 White solid, 99 mg, 64% yield, m.p. 159-161 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.32-7.28 (m, 1H), 7.22 (s, 1H), 7.15 (t, *J* = 7.1 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 141.50, 137.51, 133.93, 133.56, 129.47, 127.32, 127.05, 126.14, 122.68, 121.62, 112.64, 109.39;

HRMS(ESI): m/z calcd for C₁₄H₆D₅NNaO₂Se (M+Na)⁺: 333.0161, found: 333.0162.

The in situ ESI-MS analysis MS Analysis

The model reaction mixture was picked and dissolved in methanol/toluene mixture (3:1, v/v) toluene when the reactant time 2 h, 4 h, 6 h, 8h, 10 h, prior to FT-ICR MS analysis. Each sample was analyzed three times by negative ion ESI FT-ICR MS. The mass range was set to 150-800 Da, and the instrument parameters were optimized for a mass range of 200-500 Da in order to cover the most abundant acidic compound mass peaks measured here. The ion accumulation time was 0.6 s. A total of 40 continuous 4 M data FT-ICR transients were coded. Repeatability of the FT-ICR MS experiments was tested by comparing the relative concentrations of the ¹⁶O2 class species for the three replicates of all samples. The relative standard deviation of the relative concentration for most O₂ class species was below 5% (except for some O₂ class species with very small relative concentration), indicating that results of the FT-ICR MS experiments were stable.

Analytical Datas

2-Benzeneselenonyl-1H-indole (3a) White solid, 126.2 mg, 83% yield, m.p. 159-161 °C;
¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 8.02 (d, J = 7.7 Hz, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.3 Hz, 1H), 7.45 (dd, J = 18.0, 8.4 Hz, 3H), 7.32-7.28 (m, 1H), 7.22 (s, 1H), 7.15 (t, J = 7.1 Hz, 1H);
¹³C NMR (101 MHz, CDCl₃) δ 141.50, 137.51, 133.93, 133.56, 129.47, 127.32, 127.05, 126.14, 122.68, 121.62, 112.64, 109.39;

HRMS(ESI): m/z calcd for C₁₄H₁₁NNaO₂Se (M+Na)⁺: 327.9847, found: 327.9844.

2-(Toluene-4-selenonyl)-1H-indole (3b) White solid, 133.6 mg, 84% yield, m.p. 190-192 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.91 (s, 1H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 1H), 7.43-7.39 (m, 1H), 7.36-7.27 (m, 3H), 7.20-7.14 (m, 2H), 2.39 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 144.68, 138.68, 137.12, 134.69, 130.12, 127.49, 126.10, 122.81, 121.69, 112.36, 108.98, 21.74;

HRMS(ESI): m/z calcd for C₁₅H₁₃NNaO₂Se (M+Na)⁺: 342.0004, found: 342.0001.

2-(4-tert-Butyl-benzeneselenonyl)-1H-indole (3c) White solid, 156.7 mg, 87% yield, m.p. 192-194 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.94 (d, *J* = 8.7 Hz, 2H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.29 (ddd, *J* = 8.3, 7.1, 1.0 Hz, 1H), 7.21 (d, *J* = 1.3 Hz, 1H), 7.18-7.12 (m, 1H), 1.27 (s, 9H);

¹³C NMR (101 MHz, CDCl₃) δ 157.57, 138.47, 137.38, 134.50, 127.28, 127.12, 126.54, 126.02, 122.67, 121.58, 112.59, 109.01, 35.33, 31.10;

HRMS(ESI): m/z calcd for C₁₈H₁₉NNaO₂Se (M+Na)⁺: 384.0473, found: 384.0470.

2-(4-Methoxy-benzeneselenonyl)-1H-indole (3d) White solid, 153.7 mg, 92% yield, m.p. 186-187 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 2.6 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.19-7.14 (m, 1H), 7.07 (ddd, *J* = 12.3, 7.3, 1.6 Hz, 3H), 6.69-6.62 (m, 2H), 3.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.89, 136.57, 130.14, 129.62, 129.12, 128.68, 123.06, 120.89, 119.77, 114.61, 111.64, 104.72, 55.46;

HRMS(ESI): m/z calcd for C₁₅H₁₃NNaO₃Se (M+Na)⁺: 357.9953, found: 357.9950.

2-(4-Fluoro-benzeneselenonyl)-1H-indole (3e) White solid, 125.7 mg, 78% yield, m.p. 139-141 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.02 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 8.3 Hz, 1H), 7.20-7.15 (m, 4H);

¹³C NMR (101 MHz, CDCl₃) δ 137.29, 133.98, 130.34, 130.24, 127.21, 126.39, 122.87, 121.88, 116.95, 116.72, 112.45, 109.48;

HRMS(ESI): m/z calcd for C₁₄H₁₀FNNaO₂Se (M+Na)+: 345.9753, found: 345.9750.

2-(4-Chloro-benzeneselenonyl)-1H-indole (3f) White solid, 137.1 mg, 81% yield, m.p. 146-148 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 8.05 (d, *J* = 8.7 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 3H), 7.44-7.37 (m, 2H), 7.29-7.23 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 140.67, 138.65, 135.98, 133.34, 131.34, 129.58, 129.38, 127.39, 123.24, 122.52, 112.51;

HRMS(ESI): m/z calcd for C₁₄H₁₀ClNNaO₂Se (M+Na)⁺: 361.9457, found: 361.9454.

2-(4-Bromo-benzeneselenonyl)-1H-indole (3g) White solid, 159.0 mg, 83% yield, m.p. 191-193 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.85 (d, *J* = 8.7 Hz, 2H), 7.67 (d, *J* = 8.1 Hz, 1H), 7.63 (d, *J* = 8.7 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.38-7.33 (m, 1H), 7.21-7.17 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.67, 137.31, 133.63, 132.82, 131.77, 128.93, 127.25, 126.51, 122.92,

121.95, 112.42, 109.75;

HRMS(ESI): m/z calcd for C₁₄H₁₀BrNNaO₂Se (M+Na)⁺: 371.9664, found: 371.9661.

2-(4-Trifluoromethyl-benzeneselenonyl)-1H-indole (3h) White solid, 139.6 mg, 75% yield, m.p. 151-153 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.12 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.39-7.35 (m, 1H), 7.24-7.08 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 145.05, 137.35, 132.82, 127.81, 127.11, 126.61, 122.86, 121.94, 112.33, 110.25, 65.61;

HRMS(ESI): m/z calcd for C₁₅H₁₀F₃NNaO₂Se (M+Na)+: 395.9721, found: 395.9718.

2-(4-Nitro-benzeneselenonyl)-1H-indole (3i) Light yellow solid, 120.5 mg, 69% yield, m.p. 129-132 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.36-8.34 (m, 1H), 8.33 (d, *J* = 2.1 Hz, 1H), 8.20-8.15 (m, 2H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.46-7.42 (m, 1H), 7.41-7.37 (m, 1H), 7.29 (dd, *J* = 2.1, 0.8 Hz, 1H), 7.22 (ddd, *J* = 8.0, 6.8, 1.1 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 150.40, 147.18, 137.49, 132.20, 129.24, 128.58, 127.15, 126.92, 124.61,

124.46, 122.97, 122.12, 112.35, 110.85;

HRMS(ESI): m/z calcd for C₁₄H₁₀N₂NaO₄Se (M+Na)⁺: 372.9698, found: 372.9695.

2-(Naphthalene-2-selenonyl)-1H-indole (3j) White solid, 139.9 mg, 79% yield, m.p. 156-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (s, 1H), 8.61 (s, 1H), 7.99-7.91 (m, 3H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.68-7.58 (m, 3H), 7.49-7.29 (m, 3H), 7.17 (t, *J* = 7.5 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 138.24, 137.07, 135.14, 134.19, 132.18, 129.77, 129.44, 129.30, 128.74, 127.96, 127.74, 127.16, 126.11, 122.73, 122.27, 121.63, 112.22, 109.32.

HRMS(ESI): m/z calcd for C₁₈H₁₃NNaO₂Se (M+Na)⁺: 378.0004, found: 378.0001.

5-Methyl-2-(toluene-4-selenonyl)-1H-indole (3k) White solid, 124.6 mg, 75% yield, m.p. 135-137 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 7.87 (d, *J* = 8.4 Hz, 2H), 7.42 (s, 1H), 7.29 (dd, *J* = 8.3, 5.3 Hz, 3H), 7.15 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.09-7.07 (m, 1H), 2.41 (s, 3H), 2.38 (s, 3H);

¹³CNMR (101 MHz, CDCl₃) δ 144.55, 138.80, 135.61, 134.43, 130.07, 128.03, 127.41, 121.98, 112.03, 108.53, 21.72;

HRMS(ESI): m/z calcd for C₁₆H₁₅NNaO₂Se (M+Na)⁺: 356.0160, found: 356.0157.

7-Methyl-2-(toluene-4-selenonyl)-1H-indole (3l) White solid, 126.3 mg, 76% yield, m.p. 171-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.01 (s, 1H), 7.92 (t, *J* = 6.5 Hz, 2H), 7.49 (d, *J* = 7.7 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 2.2 Hz, 1H), 7.13-7.05 (m, 2H), 2.48 (s, 3H), 2.39 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 144.61, 138.76, 137.21, 134.27, 130.11, 127.44, 126.30, 121.86, 120.26,

109.62, 21.72, 16.89;

HRMS(ESI): m/z calcd for C₁₆H₁₅NNaO₂Se (M+Na)⁺: 356.0160, found: 356.0157.

4-Methoxy-2-(toluene-4-selenonyl)-1H-indole (3m) White solid, 128.9 mg, 74% yield, m.p. 155-158 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 7.87 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 7.1 Hz, 3H), 7.23 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.52 (d, *J* = 7.8 Hz, 1H), 3.92 (s, 3H), 2.38 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 154.65, 144.52, 130.06, 127.45, 127.20, 106.80, 105.11, 100.55, 55.52, 21.72;

HRMS(ESI): m/z calcd for C₁₆H₁₅NNaO₃Se (M)⁺: 372.0109, found: 372.0106.

5-Methoxy-2-(toluene-4-selenonyl)-1H-indole (3n) White solid, 125.4 mg, 72% yield, m.p. 145-147 °C;

¹H NMR (400 MHz, $CDCl_3$) δ 8.92 (s, 1H), 7.87 (d, *J* = 8.4 Hz, 2H), 7.29 (dd, *J* = 8.5, 4.2 Hz, 3H), 7.08 (dd, *J* = 2.1, 0.9 Hz, 1H), 7.04-6.97 (m, 2H), 3.82 (s, 3H), 2.39 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 155.26, 144.58, 134.74, 132.48, 130.09, 127.73, 127.41, 117.75, 113.35, 108.52, 102.66, 55.83, 21.73;

HRMS(ESI): m/z calcd for C₁₆H₁₅NNaO₃Se (M+Na)+: 372.0109, found: 372.0106.

7-Methoxy-2-(toluene-4-selenonyl)-1H-indole (3o) White solid, 116.7 mg, 67% yield, m.p.149-151 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.00 (s, 1H), 7.86 (d, J = 8.3 Hz, 2H), 7.28 (s, 2H), 7.23 (d, J = 8.2 Hz, 1H),

7.16–7.03 (m, 3H), 6.73 (d, J = 7.7 Hz, 1H), 3.95 (s, 3H), 2.38 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 146.65, 144.52, 138.77, 134.40, 130.04, 127.47, 122.15, 114.85, 109.09, 104.80, 55.60, 21.71;

HRMS(ESI): m/z calcd for C₁₆H₁₅NNaO₃Se (M+Na)+: 372.0109, found: 372.0106.

4-Benzyl-2-(toluene-4-selenonyl)-1H-indole (3p) White solid, 134.8 mg, 66% yield, m.p. 136-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.37 (dt, *J* = 24.0, 7.0 Hz, 4H), 7.28 (s, 1H), 7.22 (t, *J* = 8.1 Hz, 1H), 6.58 (d, *J* = 7.8 Hz, 1H), 5.18 (s, 2H), 2.38 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 153.74, 138.79, 138.54, 136.92, 133.16, 130.07, 128.72, 128.15, 127.44, 107.00, 105.38, 101.85, 70.11, 21.72;

HRMS(ESI): m/z calcd for C₂₂H₁₉NNaO₂Se (M)⁺: 432.0473, found: 432.0470.

6-Bromo-2-(toluene-4-selenonyl)-1H-indole (3q) Brown solid, 158.7 mg, 90% yield, m.p. 181-182 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.25 (s, 1H), 7.88 (d, *J* = 8.3 Hz, 2H), 7.61-7.48 (m, 2H), 7.33-7.27 (m, 3H), 2.39 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 144.99, 138.28, 137.75, 135.32, 130.24, 127.50, 126.01, 125.30, 123.96, 119.78, 115.35, 108.91, 21.77;

HRMS(ESI): m/z calcd for C₁₅H₁₂ClNNaO₂Se (M+Na)⁺: 375.9614, found: 375.9611.

7-Bromo-2-(toluene-4-selenonyl)-1H-indole (3r) Dark red solid, 160.5 mg, 91% yield, m.p. 155-158

¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 8.1 Hz, 1H), 7.51-7.47 (m, 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 2.2 Hz, 1H), 7.06 (t, *J* = 7.8 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.87, 138.14, 135.77, 135.57, 130.10, 128.20, 128.02, 127.51, 122.67, 121.87, 109.60, 105.32, 21.64;

HRMS(ESI): m/z calcd for C₁₅H₁₂ClNNaO₂Se (M+Na)⁺: 375.9614, found: 375.9611.

3-Methyl-2-(toluene-4-selenonyl)-1H-indole (3s) Yellow solid, 108.0 mg, 65% yield, m.p. 186-187 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 7.87 (dd, *J* = 8.3, 2.6 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.33-7.23 (m, 3H), 7.17-7.11 (m, 1H), 2.53 (s, 3H), 2.36 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 144.38, 139.09, 136.09, 130.02, 129.52, 128.32, 126.12, 118.51, 112.42, 21.65, 9.02;

HRMS(ESI): m/z calcd for C₁₆H₁₅NNaO₂Se (M+Na)⁺: 356.0160, found: 356.0157.

2-Benzeneselenonyl-1-methyl-1H-pyrrole (5a) Light yellow viscous solid, 101.9 mg, 76% yield, m.p. 76-78 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.1 Hz, 2H), 7.57-7.48 (m, 3H), 7.03 (dd, *J* = 4.0, 1.9 Hz, 1H), 6.76 (s, 1H), 6.17 (dd, *J* = 4.0, 2.6 Hz, 1H), 3.70 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 142.25, 132.98, 129.81, 129.31, 127.23, 118.96, 108.45, 35.73;

HRMS(ESI): m/z calcd for C₁₁H₁₁NNaO₂Se (M+H)⁺: 291.9847, found: 291.9844.

°C;

1-Methyl-2-(toluene-4-selenonyl)-1H-pyrrole (5b) White solid, 111.5 mg, 79% yield, m.p. 99-101 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.00 (dd, *J* = 4.0, 1.9 Hz, 1H), 6.74 (t, *J* = 2.2 Hz, 1H), 6.16 (dd, *J* = 4.0, 2.6 Hz, 1H), 3.70 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.90, 139.36, 129.94, 129.54, 128.44, 118.63, 108.35, 35.72, 21.68; HRMS(ESI): m/z calcd for C₁₂H₁₃NNaO₂Se (M+H)⁺: 306.0009, found: 306.0006.

2-(4-tert-Butyl-benzeneselenonyl)-1-methyl-1H-pyrrole (5c) Pale yellow solid, 126.5 mg, 78% yield, m.p. 59-61 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.7 Hz, 2H), 7.50 (d, *J* = 8.7 Hz, 2H), 7.02 (dd, *J* = 4.0, 1.9 Hz, 1H), 6.75 (t, *J* = 2.2 Hz, 1H), 6.16 (dd, *J* = 4.0, 2.6 Hz, 1H), 3.72 (s, 3H), 1.32 (s, 9H);

¹³C NMR (101 MHz, CDCl₃) δ 156.84, 139.25, 129.56, 128.43, 127.16, 126.33, 118.64, 108.33, 35.79, 35.30, 31.18;

HRMS(ESI): m/z calcd for C₁₅H₁₉NNaO₂Se (M+H)⁺: 348.0479, found: 348.0476.

2-(4-Fluoro-benzeneselenonyl)-1-methyl-1H-pyrrole (5d) Pale yellow solid, 98.7 mg, 69% yield, m.p. 61-63 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.9, 5.1 Hz, 2H), 7.17 (t, *J* = 8.6 Hz, 2H), 7.01 (dd, *J* = 4.0, 1.9 Hz, 1H), 6.78 (t, *J* = 2.1 Hz, 1H), 6.17 (dd, *J* = 4.0, 2.6 Hz, 1H), 3.71 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 166.49, 163.95, 138.35, 130.07, 129.97, 127.72, 118.97, 116.67, 116.44, 108.52, 35.69;

HRMS(ESI): m/z calcd for C₁₁H₁₀FNNaO₂Se (M+H)⁺: 309.9758, found: 309.9755.

2-(4-Chloro-benzeneselenonyl)-1-methyl-1H-pyrrole (5e) Yellow solid, 98.3 mg, 65% yield, m.p. 73-75 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.03 (dd, *J* = 4.1, 1.9 Hz, 1H), 6.78 (t, *J* = 2.2 Hz, 1H), 6.18 (dd, *J* = 4.1, 2.6 Hz, 1H), 3.71 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 140.87, 139.57, 130.13, 129.65, 128.77, 127.54, 119.30, 108.70, 35.80; HRMS(ESI): m/z calcd for C₁₁H₁₀ClNNaO₂Se (M+H)⁺: 325.9463, found: 325.9460.

2-(4-Bromo-benzeneselenonyl)-1-methyl-1H-pyrrole (5f) Pale yellow solid, 114.5 mg, 66% yield, m.p. 90-92 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.7 Hz, 2H), 7.64 (d, *J* = 8.7 Hz, 2H), 7.03 (dd, *J* = 4.1, 1.9 Hz, 1H), 6.78 (t, *J* = 2.2 Hz, 1H), 6.18 (dd, *J* = 4.1, 2.6 Hz, 1H), 3.71 (s, 3H);

 ^{13}C NMR (101 MHz, CDCl_3) δ 141.39, 132.62, 130.16, 128.83, 128.07, 127.45, 119.32, 35.79;

HRMS(ESI): m/z calcd for C₁₁H₁₀BrNNaO₂Se (M+H)⁺: 369.8958, found: 369.8955.

2-(3-Bromo-benzeneselenonyl)-1-methyl-1H-pyrrole (5g) Pale yellow solid, 118.0 mg, 68% yield, m.p. 66-68 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 2H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.09 (dd, *J* = 4.1, 1.9 Hz, 1H), 6.81 (t, *J* = 2.2 Hz, 1H), 6.21 (dd, *J* = 4.1, 2.6 Hz, 1H), 3.73 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 145.96, 134.76, 134.43, 130.61, 127.77, 126.85, 126.53, 126.50, 124.63, 121.92, 119.92, 108.94, 35.87;

HRMS(ESI): m/z calcd for C₁₁H₁₀BrNNaO₂Se (M+H) ⁺: 369.8958, found: 369.8955.

1-Methyl-2-(4-trifluoromethyl-benzeneselenonyl)-1H-pyrrole (5h) Pale yellow solid, 99.2 mg, 59% yield, m.p. 55-58 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.01 (t, *J* = 1.8 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 7.9 Hz, 1H), 7.05 (dd, *J* = 4.1, 1.9 Hz, 1H), 6.80 (t, *J* = 2.2 Hz, 1H), 6.20 (dd, *J* = 4.1, 2.6 Hz, 1H), 3.72 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 144.26, 136.02, 130.86, 130.36, 130.09, 127.11, 125.78, 123.25, 119.62, 108.77, 35.85;

HRMS(ESI): m/z calcd for C₁₂H₁₀F₃NNaO₂Se (M)+: 359.9726, found: 359.9723.

1-Methyl-2-(naphthalene-2-selenonyl)-1H-pyrrole (5i) Pale yellow solid, 111.3 mg, 70% yield, m.p. 60-63 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.93 (td, *J* = 17.0, 16.6, 7.8 Hz, 3H), 7.80 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.66-7.57 (m, 2H), 7.10 (dd, *J* = 4.0, 1.9 Hz, 1H), 6.75 (t, *J* = 2.2 Hz, 1H), 6.19 (dd, *J*= 4.0, 2.6 Hz, 1H), 3.72 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 139.13, 135.02, 132.30, 129.85, 129.73, 129.47, 129.15, 128.33, 128.06, 127.72, 122.71, 119.14, 108.54, 35.81;

HRMS(ESI): m/z calcd for C₁₅H₁₃NNaO₂Se (M+H)⁺: 342.0009, found: 342.0006.

Spectrums

Figure 4. ¹³C NMR **3b**

Figure 6. ¹³C NMR **3c**

Figure 8. ¹³C NMR **3d**

Figure 10. ¹³C NMR **3e**

Figure 12. ¹³C NMR **3f**

Figure 14. ¹³C NMR **3g**

Figure 16. ¹³C NMR **3h**

Figure 18. ¹³C NMR **3i**

Figure 20. ¹³C NMR **3**j

Figure 22. ¹³C NMR **3k**

Figure 24. ¹³C NMR 3I

Figure 28. ¹³C NMR **3n**

Figure 30. ¹³C NMR **30**

Figure 32. ¹³C NMR **3p**

Figure 34. ¹³C NMR **3q**

Figure 38. ¹³C NMR **3s**

Figure 40. ¹³C NMR 5a

Figure 42. ¹³C NMR **5b**

Figure 44. ¹³C NMR **5c**

Figure 46. ¹³C NMR **5d**

Figure 48. ¹³C NMR **5e**

Figure 50. ¹³C NMR 5f

Figure 52. ¹³C NMR 5g

Figure 54. ¹³C NMR **5h**

Figure 56. ¹³C NMR 5i

Figure 57. ¹H NMR **9**

Figure 58. ¹³C NMR **9**

Figure 60. ESI HR-MS of ¹⁸O₂ deuterium labeling study **3a**