Supporting Information

$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$-Promoted C-Se Bond Formation to Construct α-Phenylseleno Carbonyl Compounds and α, β-Unsaturated Carbonyl Compounds

Xue-Yan Yang, \dagger^{a} Rui-Zhe Wang, $\dot{\dagger}^{\mathrm{b}}$ Lu Wang, ${ }^{\text {a }}$ Jian-Jun Li, ${ }^{\text {b }}$ Shuai Mao, ${ }^{\text {a }}$ San-Qi Zhang*a, Nanzheng Chen* ${ }^{\text {c }}$
${ }^{a}$ Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
${ }^{b}$ Department of Chemistry, School of Science, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
${ }^{c}$ The thoracic surgery department of the First affiliated hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.

Table of Contents

General information S-2
Experimental Information and Characterization Data S-2
Reference S-10
NMR spectra. S-11

General information

All the regular chemicals were purchased from commercial sources with purity over 95% and used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 MHz NMR (400 MHz and 100 MHz , respectively) spectrometer or a Bruker 600 MHz NMR (600 MHz and 150 MHz , respectively) spectrometer. Chemical shifts (δ) was expressed in ppm. Flash chromatography was performed using standard grade silica gel (200-300 mesh). Analytical TLC was performed with GF254 precoated silica gel plates with visualization using UV (254 nm) radiation. High resolution mass spectra (HRMS) were acquired with a Bruker Daltonics MicroTof-Q II mass spectrometer. Products purification was done using silica gel column chromatography. Infrared (IR) data were recorded as films on potassium bromide plates with a Bruker Tensor 27 FT-IR spectrometer. Absorbance frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$.

Experimental Information and Characterization Data

General procedure for the synthesis of 3a-3t.

Carbonyl compounds (0.5 mmol), $\mathrm{PhSeSePh}(0.25 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.25 \mathrm{mmol})$ were placed in a 10 mL sealed tube. Dimethyl sulfoxide (2 mL) was added, and the mixture was heated at $80^{\circ} \mathrm{C}$. TLC was used to monitor the progress of the reaction until the UV absorption of diphenyl diselenide completely disappeared or the UV absorption of the target product was no longer enhanced. After the reaction was completed, the mixture was cooled to room temperature and then transferred to a separating funnel with ethyl acetate (80 mL), washed with water ($20 \mathrm{~mL} \times 10$), saturated brine ($30 \mathrm{~mL} \times 2$), and the organic phase was dried over anhydrous sodium sulfate and filtered. The filtrate was evaporated by rotary evaporation to remove the organic solvent, and the residue was separated by column chromatography to obtain the pure target product.

General procedure for the synthesis of 4b, 4d-4e.

Carbonyl compounds (0.5 mmol), $\mathrm{PhSeSePh}(0.25 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.25 \mathrm{mmol})$ were placed in a 10 mL sealed tube. Dimethyl sulfoxide (2 mL) was added, and the
mixture was heated at $80^{\circ} \mathrm{C}$. When the UV absorption of PhSeSePh disappeared by TLC monitoring, the mixture was cooled to $25^{\circ} \mathrm{C}$, and then $\mathrm{H}_{2} \mathrm{O}_{2}(1.5 \mathrm{mmol}, 150 \mu \mathrm{~L}$ $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$), pyridine (1 mmol), DCM (3 mL) were added. The mixture was stirred for additional 30 min then added to 25 ml of dichloromethane and 30 ml of 7% NaHCO_{3} solution. The aqueous layer was washed with 25 ml of dichloromethane, and the combined organic layers were washed with 30 ml of $10 \% \mathrm{HCl}$ solution and 30 ml of saturated NaCl and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After solvent removal, distillation gave the target product.

Control experiments for mechanistic study.

Reaction of Scheme 2a-b: 1a (0.5 mmol), $\mathrm{PhSeSePh}(0.25 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.25$ $\mathrm{mmol})$, TEMPO (1 mmol) or DPE (1 mmol) were placed in a 10 mL sealed tube. Dimethyl sulfoxide (2 mL) was added, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 8 h . TLC was used to monitor the progress. Reaction of Scheme 2c: 1a $(0.5 \mathrm{mmol})$ and $\mathrm{PhSeSePh}(0.25 \mathrm{mmol})$ were placed in a 10 mL sealed tube. Dimethyl sulfoxide (2 mL) was added, and the mixture was stired at room temperature for 12 h under the light from a 18W white LED. The post-processing was the same as that of 3a-3t.

1-(Phenylselanyl)propan-2-one. ${ }^{1}$ Compound 3a was obtained in 90% yield (96.3 mg) according to the general procedure (PE/EA, 75:1~50:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.6,133.3,129.4,128.8,128.0,36.9,28.1$; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$214.9975, found: 214.9977.

2-(Phenylselanyl)pentan-3-one. ${ }^{2}$ Compound 3b was obtained in 92% yield (111.4 mg) according to the general procedure (PE/EA, 75:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.85-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.7,135.9,129.2,128.8,127.2,45.1,33.1$, 16.6, 8.5; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{OSe}$: $[\mathrm{M}+\mathrm{H}]^{+}$243.0288, found: 243.0289 .

4-phenyl-3-(phenylselanyl)butan-2-one. ${ }^{1}$ Compound $\mathbf{3 c}$ was obtained in 87% yield $(132.1 \mathrm{mg})$ according to the general procedure (PE/EA, 50:1): yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, 2 \mathrm{H}), 7.35(\mathrm{t}, 1 \mathrm{H}), 7.29(\mathrm{dd}, 4 \mathrm{H}), 7.21(\mathrm{t}, 1 \mathrm{H}), 7.16(\mathrm{~d}$, 2H), $3.92(\mathrm{dd}, 1 \mathrm{H}), 3.24(\mathrm{dd}, 1 \mathrm{H}), 3.01(\mathrm{dd}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 203.6,139.1,135.8,129.3,129.0,128.9,128.5,127.3,126.6,53.0,36.8$, 28.3; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+} 305.0445$, found: 305.0447.

2-(Phenylselanyl)cyclopentan-1-one. ${ }^{1}$ Compound 3d was obtained in 80% yield $(96.4 \mathrm{mg})$ according to the general procedure (PE/EA, 60:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 1 \mathrm{H})$, $2.38-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.87(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 214.6,135.4,129.2,128.5,127.9,46.5,36.4,30.8,21.0 ;$ HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+} 241.0132$, found: 241.0135 .

2-(Phenylselanyl)cyclohexan-1-one. ${ }^{3}$ Compound 3e was obtained in 75\% yield (95.2 mg) according to the general procedure (PE/EA, 75:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 3 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.93$ (m, 1H), 2.36 - 2.26 (m, 1H), $2.24-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.67(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.9,134.6,129.2,128.6,128.1,51.6,38.5,34.0$, 26.9, 22.9; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+} 255.0288$, found: 255.0290 .

2-(Phenylselanyl)cycloheptan-1-one. ${ }^{4}$ Compound 3f was obtained in 73% yield $(97.5 \mathrm{mg})$ according to the general procedure (PE/EA, 50:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{dd}, J=11.1,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 1 \mathrm{H})$, $1.88(\mathrm{dd}, J=14.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.33$ $(\mathrm{m}, 2 \mathrm{H}), 1.24(\mathrm{q}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.2,134.9$, 129.1, 128.5, 128.3, 52.4, 40.0, 30.6, 30.3, 28.1, 25.7; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+} 269.0445$, found: 269.0446 .

2-(Phenylselanyl)cyclooctan-1-one. ${ }^{5}$ Compound $\mathbf{3 g}$ was obtained in $\mathbf{6 5 \%}$ yield (91.6 mg) according to the general procedure (PE/EA, 50:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.83$ (td, $J=12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=12.4,5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H})$, 1.86 (ddd, $J=11.5,8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.15$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.0,135.3,129.2,128.5,128.0,53.0,36.8$, 29.2, 28.7, 28.4, 25.7, 24.2; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$283.0601, found: 283.0604.

2-(Phenylselanyl)cyclopentadecan-1-one. ${ }^{6}$ Compound $\mathbf{3 h}$ was obtained in 62% yield $(117.8 \mathrm{mg})$ according to the general procedure (PE/EA, 75:1): yellow semi-solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{dd}, J=9.9$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 20 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
207.6, 135.6, 129.1, 128.6, 127.5, 50.9, 40.0, 30.5, 27.5, 27.4, 27.0, 26.9, 26.8, 26.7, 26.3, 26.2, 26.1, 26.1, 24.3; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$381.1697, found: 381.1699.

3-(phenylselanyl)tetrahydro-4H-pyran-4-one. ${ }^{4}$ Compound $\mathbf{3 i}$ was obtained in 77% yield (98.6 mg) according to the general procedure (PE/EA, 70:1): yellow liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.59$ - 7.53 (m, 2H), 7.30 (d, 3H), 4.08 (d, 3H), 3.98 $3.87(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 203.1,134.8,129.3,128.4,127.6,73.0,68.3,51.1,40.3$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Se}:[\mathrm{M}+\mathrm{H}]^{+} 257.0081$, found: 257.0084.

2-methyl-6-(phenylselanyl)-5-(prop-1-en-2-yl)cyclohex-2-en-1-one. Compound 3j was obtained in 71% yield (108.6 mg) according to the general procedure (PE/EA, 50:1): yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28$ (m, 2H), $7.25(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 1 \mathrm{H})$, $2.40-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 195.4,143.8,143.0,136.2,133.7,129.0,128.4,127.0,112.4,51.6,45.0$, 27.7, 21.7, 16.2; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$307.0601, found: 307.0603. IR (cm ${ }^{-1}$): 3055, 2920, 2850, 1664, 1577, 1477, 1436, 1367, 1096, 1055, 1022.

2-(Phenylselanyl)propanal. ${ }^{3}$ Compound $\mathbf{3 k}$ was obtained in 92% yield (98.4 mg)
according to the general procedure (PE/EA, 70:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.45(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{dd}$, $J=7.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.6$, 136.2, 129.3, 129.0, 125.7, 46.6, 13.5; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$ 214.9975, found: 214.9978 .

2-(Phenylselanyl)butanal. ${ }^{3}$ Compound 31 was obtained in 93% yield (106.0 mg) according to the general procedure (PE/EA, 75:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.53(\mathrm{td}$, $\mathrm{J}=7.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 193.1$ 136.0, 129.3, 128.9, 125.9, 54.8, 21.1, 12.7; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$229.0132, found: 229.0135 .

2-(Phenylselanyl)pentanal. ${ }^{3}$ Compound $\mathbf{3 m}$ was obtained in 90% yield (108.9 mg) according to the general procedure (PE/EA, 75:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.38(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.64-$ $3.57(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.1,135.9,129.3,128.9,126.0,52.7$, 29.7, 21.3, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$243.0288, found: 243.0290 .

2-(Phenylselanyl)hexanal. ${ }^{4}$ Compound 3 n was obtained in 86% yield (110.1 mg) according to the general procedure (PE/EA, 60:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.38(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.65-$ $3.55(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.42-$
$1.33(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.1,135.9$, 129.3, 128.9, 126.0, 53.0, 30.1, 27.3, 22.4, 13.9; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{OSe}$: $[\mathrm{M}+\mathrm{H}]^{+} 257.0445$, found: 257.0448 .

2-(Phenylselanyl)heptanal. ${ }^{4}$ Compound $\mathbf{3 o}$ was obtained in 83% yield (112.1 mg) according to the general procedure (PE/EA, 70:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.38(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{td}, \mathrm{J}=7.4$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.45-$ $1.36(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.1,135.8,129.3,128.8,126.0,53.0,31.4,27.7,27.6,22.4,14.0$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$271.0601, found: 271.0603.

2-(Phenylselanyl)octanal. ${ }^{4}$ Compound $\mathbf{3 p}$ was obtained in 85% yield (120.7 mg) according to the general procedure (PE/EA, 70:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.37(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{td}$, $\mathrm{J}=7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.22(\mathrm{~m}, 8 \mathrm{H})$, $0.87(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.1, 135.9, 129.3, 128.8, 126.0, 53.0, 31.6, 28.9, 28.0, 27.8, 22.6, 14.1; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{OSe}$: $[\mathrm{M}+\mathrm{H}]^{+}$285.0758, found: 285.0761.

2-(Phenylselanyl)dodecanal. ${ }^{4}$ Compound $\mathbf{3 q}$ was obtained in 70% yield (119.0 mg) according to the general procedure (PE/EA, 75:1~40:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.37(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H})$, $3.59(\mathrm{td}, J=7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 15 \mathrm{H})$,
$0.88(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.1, 135.9, 129.3, 128.8, 126.0, 53.0, 31.9, 29.6, 29.5, 29.4, 29.3, 28.3, 28.0, 27.7, 22.7, 14.2; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+} 341.1384$, found: 341.1386.

3-Phenyl-2-(phenylselanyl)propanal. ${ }^{4}$ Compound $\mathbf{3 r}$ was obtained in 94% yield (136.3 mg) according to the general procedure (PE/EA, 70:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.45(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.87$ (ddd, $J=8.4,6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22(\mathrm{dd}, J=14.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=14.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.1,138.3,136.1,129.4,129.1,129.1,128.7,126.9,125.8,53.5,34.1 ;$ HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{OSe}$: $[\mathrm{M}+\mathrm{H}]^{+}$291.0288, found: 291.0291.

1-(Phenylselanyl)cyclopentane-1-carbaldehyde. ${ }^{7}$ Compound $\mathbf{3 s}$ was obtained in 83% yield (105.4 mg) according to the general procedure (PE/EA, 60:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.3,136.8,129.3,129.1,127.0$, 63.1, 32.2, 24.7; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$255.0288, found: 255.0291.

2-Methyl-2-(phenylselanyl)propanal. ${ }^{4}$ Compound 3t was obtained in 85% yield $(96.8 \mathrm{mg})$ according to the general procedure (PE/EA, 75:1): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.28(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.5, 137.8, 129.6, 129.1, 126.1, 53.4, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OSe}:[\mathrm{M}+\mathrm{H}]^{+}$229.0132, found: 229.0136.

Pent-1-en-3-one. ${ }^{8}$ Compound $\mathbf{4 b}$ was obtained in 71% yield (29.8 mg) according to the general procedure (PE/EA, 70:1): Colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.33(\mathrm{dd}, J=17.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.14(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=10.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.59(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.4, 136.4, 127.8, 32.8, 7.9; HRMS (ESI) calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+} 85.0653$, found: 85.0656.

Cyclopent-2-en-1-one. ${ }^{9}$ Compound $4 d$ was obtained in 91% yield (37.3 mg) according to the general procedure (PE/EA, 70:1): Amber liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{dt}, J=5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dt}, J=5.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dq}, J=$ 6.9, 2.3 Hz, 2H), 2.42 - $2.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.7,165.0$, 134.5, 34.0, 29.0; HRMS (ESI) calcd for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}:[\mathrm{M}+\mathrm{H}]^{+}$83.0497, found: 83.0499.

Cyclohex-2-en-1-one. ${ }^{9}$ Compound $\mathbf{4 e}$ was obtained in 87% yield (41.7 mg) according to the general procedure (PE/EA, 80:1): yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.01(\mathrm{dt}, J=10.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=10.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.36 (tdd, $J=6.1,4.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{dt}, J=12.3,6.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,150.7,129.8,38.1,25.6,22.7$; HRMS (ESI) calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}$: $[\mathrm{M}+\mathrm{H}]^{+} 97.0653$, found: 97.0656.

Reference

1 Y. Cao, J. Liu, F. Liu, L. Jiang and W. Yi, Org. Chem. Front., 2019, 6, 825.
2 M. Nazari and B. Movassagh, Tetrahedron Lett., 2009, 50, 1453.
3 F. N. Victoria, C. S. Radatz, M. Sachini, R. G. Jacob, G. Perin, W. P. da Silva and E. J. Lenardão, Tetrahedron Lett., 2009, 50, 6761.
4 J. Wang, H. Li, Y. Mei, B. Lou, D. Xu, D. Xie, H. Guo and W. Wang, J. Org. Chem., 2005, 70, 5678.

5 C. Janine and F. Nathalie, Tetrahedron Lett., 1993, 34, 7755.
6 L. Engman, J. Org. Chem., 1988, 53, 4031.

7 L. Set, D. R. Cheshire and D. L. J. Clive, J. Chem. Soc. Chem. Commun., 1985, 1985, 1205.
8 T. Veysoglu, L. A. Mitscher and J. K. Swayze, Synthesis, 1980, 1980, 807.
9 H. Tateno, Y. Miseki and K. Sayama, Chem. Commu., 2019, 55, 9339.

NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a}$

Figure S2. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 b}$

Figure S3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}$

Figure S4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 d}$

Figure S5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 e}$
ms-20170121-01-H

Figure S6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f}$

Figure S7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g}$

Figure S8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 h}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 i}$

Figure S10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j}$

Figure S11. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 k}$

Figure S12. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 31

Figure S13. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 m}$

Figure S14. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 n}$

Figure S15. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 o}$

Figure S16. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 p}$

Figure S17. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 q}$

Figure S18. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 r}$

Figure S19. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 s}$

Figure S20. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 t}$

Figure S21. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b}$

Figure S22. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 d}$

Figure S23. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 e}$

