Supplementary Information

Study on the unsteady state oxidative coupling of methane: Effects of oxygen species from O₂,

surface lattice oxygen, and CO₂ on the selectivity

Table of contents

Fig. S1. (a) Schematic reaction system and (b, c) the manufactured quartz reactors.

Fig. S2. Temperature profile of the catalyst bed at the furnace temperature of 750 °C, 800 °C, and 850 °C. A thermocouple was directly positioned at the top, middle, and bottom of the bed.

Fig. S3. (a, b) Ratios of olefins/paraffins and CO/CO₂, and (c, d) oxygen consumption for the dehydrogenation of ethane (or propane) and the oxidation of CO, depending on the content of N_2 diluent under (a, c) 750 °C and (b, d) 850 °C.

Fig. S4. (a, b) Ratios of olefins/paraffins and CO/CO₂, and (c, d) oxygen consumption for the dehydrogenation of ethane (or propane) and the oxidation of CO, at various GHSV and catalyst bed thickness under (a, c) 750 °C and (b, d) 850 °C.

Fig. S5. (a, b) Ratios of olefins/paraffins and CO/CO₂, and (c, d) oxygen consumption for the dehydrogenation of ethane (or propane) and the oxidation of CO, at various GHSV and total flow rate of the feed gas under (a, c) 750 °C and (b, d) 850 °C.

Fig. S6. (a, b) Ratios of olefins/paraffins and CO/CO₂, and (c, d) oxygen consumption for the dehydrogenation of ethane (or propane) and the oxidation of CO, at 16% CO₂ co-dilution and various GHSV and catalyst bed thickness under (a, c) 750 °C and (b, d) 850 °C.

Fig. S7. C_{2+} yield depending on CH_4 conversion and O_2 conversion. All results with O_2 conversion < 100% reported herein are included.

Fig. S8. (a) XRD and (b) Raman spectra of catalysts depending on the heating temperature. The results of fresh catalysts at room temperature depicted for comparison.

Fig. S9. Activities of various catalysts for the OCM reaction in terms of (a) CH₄ conversion and (b) C₂₊ selectivity. CH₄/O₂ = 3 mol/mol, GHSV = 10,000 h⁻¹.

Fig. S10. XPS results of fresh and spent Na₂WO₄/Mn/SiO₂ catalysts.

Table S1. OCM reaction results at various CH₄/O₂ ratios.

Table S2. OCM reaction results at various contents of N₂ diluent.

Table S3. OCM reaction results at various GHSV adjusted by the catalyst bed thickness.

Table S4. O_2 consumption for the selectivity at various_GHSV adjusted by the catalyst bed thickness.

Table S5. OCM reaction results at various GHSV adjusted by the total feed flow rate.

Table S6. O₂ consumption for the selectivity at various GHSV adjusted by the total feed flow rate.

Table S7. OCM results with co-fed CO₂ at various GHSV and catalyst bed thickness.

Table S8. O_2 consumption for the selectivity with co-fed CO_2 at various GHSV adjusted by the catalyst bed thickness.

Table S9. Observed XPS binding energies (eV) and near-surface compositions (atom%) of the Na₂WO₄/Mn/SiO₂ catalysts.

Fig. S1. (a) Schematic reaction system and (b, c) the manufactured quartz reactors.

Fig. S2. Temperature profile of the catalyst bed at the furnace temperature of 750 °C, 800 °C, and 850 °C. The blue dotted lines indicate the furnace temperatures. A thermocouple was directly positioned at the top, middle, and bottom of the bed. Catalyst bed thickness = 35.3 mm. $CH_4/O_2/N_2/CO_2 = 3/1/1/0$ (for $CH_4+O_2+N_2$), 3/1/0.2/0.8 (for $CH_4+O_2+N_2+CO_2$).

Fig. S3. (a, b) Ratios of olefins/paraffins and CO/CO₂, and (c, d) oxygen consumption for the dehydrogenation of ethane (or propane) and the oxidation of CO, depending on the content of N_2 diluent under (a, c) 750 °C and (b, d) 850 °C.

Fig. S4. (a, b) Ratios of olefins/paraffins and CO/CO_2 , and (c, d) oxygen consumption for the dehydrogenation of ethane (or propane) and the oxidation of CO, at various GHSV and catalyst bed thickness with a fixed flow rate under (a, c) 750 °C and (b, d) 850 °C.

Fig. S5. (a, b) Ratios of olefins/paraffins and CO/CO_2 , and (c, d) oxygen consumption for the dehydrogenation of ethane (or propane) and the oxidation of CO, at various GHSV and total flow rate of the feed gas with a fixed catalyst bed thickness under (a, c) 750 °C and (b, d) 850 °C.

Fig. S6. (a, b) Ratios of olefins/paraffins and CO/CO_2 , and (c, d) oxygen consumption for the dehydrogenation of ethane (or propane) and the oxidation of CO, at 16% CO₂ co-dilution and various GHSV and catalyst bed thickness under (a, c) 750 °C and (b, d) 850 °C.

Fig. S7. C_{2+} yield depending on CH_4 conversion and O_2 conversion. All results with O_2 conversion < 100% reported herein are included.

Fig. S8. (a) XRD and (b) Raman spectra of catalysts depending on the heating temperature. The results of fresh catalysts at room temperature depicted for comparison.

Fig. S9. Activities of various catalysts for the OCM reaction in terms of (a) CH_4 conversion and (b) C_{2+} selectivity. $CH_4/O_2 = 3$ mol/mol, GHSV = 10,000 h⁻¹.

Tomporatura (°C)	CH ₄ /O ₂	Conve	rsion (%)	Selecti	vity (%)	Yiel	d (%)	olefins/paraffins	$CO/CO_{\rm mal/mal}$
	(mol/mol)	CH ₄	O ₂	C ₂₊	Olefins	C ₂₊	Olefins	(mol/mol)	
	1	66.9	100.0	24.5	18.4	16.4	12.3	3.0	0.63
	1.5	52.6	100.0	41.2	30.0	21.7	15.8	2.7	0.51
	2	35.4	78.8	53.4	33.4	18.9	11.8	1.7	0.52
750	2.5	27.1	65.7	51.6	28.4	14.0	7.7	1.2	0.45
730	3	18.2	54.1	54.1	24.2	9.8	4.4	0.8	0.68
	4	14.7	53.0	53.0	20.5	7.8	3.0	0.6	0.95
	5	11.5	55.0	60.9	21.4	7.0	2.4	0.5	0.44
	6	9.2	60.3	60.3	19.3	5.6	1.8	0.5	0.60
	1	66.7	100.0	25.6	20.0	17.1	13.4	3.6	0.74
	1.5	52.7	100.0	39.5	29.6	20.9	15.6	3.0	0.68
	2	44.0	100.0	49.0	35.1	21.5	15.4	2.5	0.60
800	2.5	41.3	100.0	50.6	35.4	20.9	14.6	2.3	0.53
000	3	34.2	100.0	58.5	38.7	20.0	13.3	2.0	0.51
	4	28.6	100.0	62.6	38.8	17.9	11.1	1.6	0.48
	5	24.5	100.0	66.3	38.7	16.2	9.5	1.4	0.48
	6	20.6	100.0	70.8	40.3	14.6	8.3	1.3	0.54
	1	66.2	100.0	22.2	18.1	14.7	12.0	4.4	0.92
	1.5	51.8	100.0	35.8	27.9	18.5	14.5	3.5	0.95
	2	42.6	100.0	47.2	35.5	20.1	15.1	3.0	0.83
850	2.5	40.9	100.0	46.5	31.3	19.0	12.8	2.1	0.74
050	3	33.5	100.0	55.3	38.8	18.5	13.0	2.4	0.70
	4	29.0	100.0	58.0	38.8	16.8	11.2	2.0	0.68
	5	23.3	100.0	67.2	43.4	15.6	10.1	1.8	0.69
	6	20.5	100.0	70.0	43.8	14.3	9.0	1.7	0.75

Table S1. OCM reaction results at various CH₄/O₂ ratios.^a

 a GHSV = 10,000 h⁻¹. CH₄ flow rate was fixed at 18 mL/min, and the flow rates of O₂ and N₂ were adjusted to achieve the total flow rate of 50 mL/min.

Temperature (°C)	N ₂ dilution	Conve	rsion (%)	Selecti	vity (%)	Yiel	d (%)	olefins/paraffins	$CO/CO_{(mol/mol)}$
	(%)	CH ₄	O ₂	C ₂₊	Olefins	C ₂₊	Olefins	(mol/mol)	CO/CO_2 (IIIOI/IIIOI)
	20	34.5	100	59.5	39.8	20.5	13.7	2.02	0.85
	40	29.4	86.1	62.1	36.4	18.2	10.7	1.42	0.48
750	50	18.2	52.9	54.1	22.4	9.8	4.1	0.71	0.37
	60	11.8	37.9	52.7	16.5	6.2	2.0	0.46	0.39
	80	7.3	18.2	37.7	7.1	2.8	0.5	0.23	0.30
	20	34.4	100	56.5	39.3	19.5	13.6	2.28	0.93
	40	34.3	100	59.7	40.1	20.5	13.8	2.05	0.80
800	50	35.2	100	59.7	39.6	21.0	14.0	1.97	0.63
	60	35.9	100	60.1	39.1	21.5	14.0	1.87	0.48
	80	20.3	57.7	64.4	30.1	13.1	6.1	0.88	0.37
	20	31.1	100	53.3	39.5	17.4	12.9	2.86	1.13
	40	32.4	100	58.2	41.6	18.9	13.5	2.51	1.10
850	50	34.6	100	56.2	39.5	19.4	13.6	2.35	0.89
	60	35.2	100	56.9	39.2	20.0	13.8	2.22	0.73
	80	34.9	100	61.3	39.9	21.4	13.9	1.86	0.49

Table S2. OCM reaction results at various contents of N_2 diluent.^a

 $\overline{^{a}CH_{4}/O_{2}} = 3 \text{ mol/mol, GHSV} = 10,000 \text{ h}^{-1}.$

Temperature	ature Catalyst bed		Convers	sion (%)	Selectiv	/ity (%)	Yie	eld (%)	olefins/paraffins	CO/CO ₂
(°C)	thickness (mm)	GHSV (II)	CH ₄	O ₂	C ₂₊	Olefins	C ₂₊	Olefins	(mol/mol)	(mol/mol)
	2.1	50,000	2.9	9.4	38.8	5.2	1.1	0.2	0.15	0.61
	2.65	40,000	4.4	13.8	40.2	6.8	1.8	0.3	0.20	0.33
	3.5	30,000	5.4	20.4	51.6	11.9	2.8	0.6	0.30	0.47
750	4.2	25,000	12.7	31.6	50.8	18.7	6.4	2.4	0.58	0.51
	5.3	20,000	35.9	100.0	55.1	36.3	19.7	13.0	1.94	0.67
	7.1	15,000	35.2	100.0	57.7	38.3	20.3	13.5	1.98	0.69
	10.6	10,000	34.1	100.0	59.7	39.8	20.4	13.6	2.02	0.85
	21.2	5,000	34.3	100.0	59.8	40.6	20.5	14.0	2.12	0.69
	35.3	3,000	34.5	100.0	58.9	39.7	20.4	13.7	2.06	0.72
	2.1	50,000	14.5	34.0	63.3	28.4	9.2	4.1	0.81	0.81
	2.65	40,000	33.2	99.2	56.6	38.6	18.8	12.8	2.14	1.03
	3.5	30,000	34.4	100.0	57.2	39.9	19.7	13.7	2.30	0.92
	4.2	25,000	33.3	100.0	56.7	39.1	18.9	13.0	2.22	0.92
800	5.3	20,000	35.4	100.0	56.0	38.6	19.8	13.7	2.23	0.88
	7.1	15,000	35.5	100.0	55.6	38.3	19.7	13.6	2.21	0.89
	10.6	10,000	33.9	100.0	57.1	39.6	19.3	13.4	2.28	0.93
	21.2	5,000	34.0	100.0	56.9	40.8	19.3	13.9	2.54	0.83
	35.3	3,000	33.1	100.0	59.0	41.5	19.5	13.7	2.37	0.92
	2.1	50,000	33.9	100.0	52.5	38.3	17.8	13.0	2.69	1.24
	2.65	40,000	32.3	100.0	53.0	38.4	17.1	12.4	2.63	1.28
	3.5	30,000	34.4	100.0	52.3	38.5	18.0	13.2	2.77	1.16
	4.2	25,000	33.0	100.0	50.9	37.4	16.8	12.3	2.77	1.23
850	5.3	20,000	34.4	100.0	52.5	38.6	18.0	13.3	2.77	1.16
	7.1	15,000	34.7	100.0	51.0	37.3	17.7	12.9	2.72	1.18
	10.6	10,000	32.3	100.0	53.4	39.6	17.3	12.8	2.86	1.13
	21.2	5,000	32.1	100.0	52.2	41.3	16.8	13.3	3.78	0.89
	35.3	3,000	32.3	100.0	52.2	39.8	16.9	12.8	3.19	1.06

Table S3. OCM reaction results at various GHSV adjusted by the catalyst bed thickness.^a

 $aCH_4/O_2/N_2 = 3/1/1$ mol/mol, total feed flow rate = 50 mL/min.

Temperature	Catalyst bed	$CHSV(h^{-1})$	Convers	sion (%)	O ₂ -consumption (%) for									
(°C)	thickness (mm)	UH3V (II)	CH ₄	O ₂	СО	CO ₂	C_2H_4	C_2H_6	C ₃ H ₆	C ₃ H ₈				
	2.1	50,000	2.9	9.4	3.0	6.6	0.2	0.8	0.00	0.00				
	2.65	40,000	4.4	13.8	3.6	14.4	0.4	1.1	0.01	0.00				
	3.5	30,000	5.4	20.4	4.5	12.8	1.0	1.6	0.00	0.00				
	4.2	25,000	12.7	31.6	7.8	20.5	3.4	3.0	0.21	0.10				
750	5.3	20,000	35.9	100.0	28.4	56.5	17.8	4.8	1.74	0.31				
	7.1	15,000	35.2	100.0	29.2	56.6	18.4	4.9	1.84	0.30				
	10.6	10,000	34.1	100.0	29.7	47.4	18.5	4.9	1.92	0.28				
	21.2	5,000	34.3	100.0	31.0	59.5	18.8	4.8	2.10	0.26				
	35.3	3,000	34.5	100.0	31.1	55.4	18.2	4.7	2.00	0.25				
	2.1	50,000	14.5	34.0	21.5	33.0	11.0	4.6	1.03	0.17				
	2.65	40,000	33.2	99.2	35.0	45.2	17.3	4.4	1.87	0.16				
	3.5	30,000	34.4	100.0	35.4	51.6	18.6	4.4	1.97	0.18				
	4.2	25,000	33.3	100.0	33.8	49.2	17.6	4.3	1.95	0.17				
800	5.3	20,000	35.4	100.0	34.6	52.1	18.5	4.5	2.01	0.19				
	7.1	15,000	35.5	100.0	34.2	51.0	18.3	4.5	2.02	0.19				
	10.6	10,000	33.9	100.0	35.0	51.3	18.1	4.3	2.08	0.16				
	21.2	5,000	34.0	100.0	34.5	55.7	18.5	4.0	2.26	0.13				
	35.3	3,000	33.1	100.0	35.7	53.1	18.0	4.1	2.17	0.13				
	2.1	50,000	33.9	100.0	42.2	45.8	17.2	3.6	1.96	0.07				
	2.65	40,000	32.3	100.0	41.0	42.6	16.7	3.5	1.94	0.06				
	3.5	30,000	34.4	100.0	40.7	46.7	17.8	3.6	2.05	0.08				
	4.2	25,000	33.0	100.0	40.5	44.0	16.6	3.3	1.97	0.06				
850	5.3	20,000	34.4	100.0	41.2	47.4	17.8	3.6	2.07	0.07				
	7.1	15,000	34.7	100.0	40.9	46.1	17.4	3.5	2.04	0.07				
	10.6	10,000	32.3	100.0	40.9	48.3	17.2	3.3	2.08	0.05				
	21.2	5,000	32.1	100.0	38.3	57.1	17.7	2.6	2.20	0.03				
	35.3	3,000	32.3	100.0	40.0	53.7	17.2	2.8	2.13	0.02				

Table S4. O₂ consumption for the selectivity at various_GHSV adjusted by the catalyst bed thickness.^a

 $aCH_4/O_2/N_2 = 3/1/1$ mol/mol/mol, total feed flow rate = 50 mL/min.

Temperature	Feed flow rate	$CUSV(h^{-1})$	Convers	sion (%)	Selectiv	rity (%)	Yie	eld (%)	olefins/paraffins	CO/CO ₂
(°C)	(°C) (mL/min)		CH ₄	O_2	C ₂₊	Olefins	C ₂₊	Olefins	(mol/mol)	(mol/mol)
	90.0	30,000	3.1	13.4	50.1	6.1	1.6	0.2	0.14	0.54
750	60.0	20,000	6.7	20.4	41.6	7.8	2.8	0.5	0.23	0.38
	44.9	15,000	9.5	29.5	51.5	15.1	4.9	1.4	0.41	0.49
	30.0	10,000	16.4	51.3	55.8	23.3	9.1	3.8	0.72	0.36
	15.0	5,000	26.1	89.1	58.4	33.3	15.2	8.7	1.33	0.39
	90.0	30,000	31.1	100	63.6	41.7	19.8	13.0	1.90	1.25
	60.0	20,000	35.5	100	59.2	39.1	21.0	13.9	1.94	0.79
800	44.9	15,000	35.4	100	59.3	39.2	21.0	13.9	1.95	0.60
	30.0	10,000	32.6	100	64.2	42.1	20.9	13.7	1.91	0.51
	15.0	5,000	30.1	100	60.7	40.0	18.3	12.1	1.94	0.45
	90.0	30,000	31.1	100	60.9	43.0	18.9	13.4	2.41	1.60
	60.0	20,000	34.7	100	56.5	39.4	19.6	13.7	2.30	1.16
850	44.9	15,000	33.9	100	59.1	41.3	20.0	14.0	2.32	0.87
	30.0	10,000	31.1	100	63.5	43.8	19.7	13.6	2.23	0.68
	15.0	5,000	28.5	100	59.5	42.6	16.9	12.1	2.51	0.57

Table S5. OCM reaction results at various GHSV adjusted by the total feed flow rate.^a

 $aCH_4/O_2/N_2 = 3/1/1$ mol/mol, volume of catalyst = 0.18 mL.

Temperature	Feed flow rate	$GHSV(h^{-1})$	Conver	rsion (%)	O ₂ -consumption (%) for								
(°C)	(mL/min)	0115 (11)	CH ₄	O_2	СО	CO ₂	C_2H_4	C_2H_6	C ₃ H ₆	C ₃ H ₈			
	90.0	30,000	3.1	13.4	2.9	7.1	0.3	1.0	_	-			
	60.0	20,000	6.7	20.4	4.6	16.2	0.8	1.7	-	-			
750	44.9	15,000	9.5	29.5	6.8	18.5	2.1	2.6	0.1	-			
	30.0	10,000	16.4	51.3	10.2	38.0	5.4	3.9	0.3	0.2			
	15.0	5,000	26.1	89.1	14.7	50.1	12.0	4.7	1.0	0.3			
	90.0	30,000	31.1	100	37.9	40.4	17.7	5.0	1.8	0.2			
	60.0	20,000	35.5	100	27.4	46.2	19.0	5.2	1.8	0.2			
800	44.9	15,000	35.4	100	22.5	49.6	19.1	5.1	1.8	0.3			
	30.0	10,000	32.6	100	20.4	53.8	18.8	5.2	1.8	0.3			
	15.0	5,000	30.1	100	17.7	52.4	16.4	4.5	1.7	0.2			
	90.0	30,000	31.1	100	43.4	36.2	18.2	4.1	1.9	0.1			
	60.0	20,000	34.7	100	35.3	40.6	18.6	4.4	1.9	0.1			
850	44.9	15,000	33.9	100	29.3	44.8	19.0	4.4	2.0	0.1			
	30.0	10,000	31.1	100	25.5	49.8	18.5	4.5	2.0	0.1			
	15.0	5,000	28.5	100	23.0	53.5	16.3	3.6	1.9	0.1			

Table S6. O₂ consumption for the selectivity at various GHSV adjusted by the total feed flow rate.^a

 $aCH_4/O_2/N_2 = 3/1/1$ mol/mol, volume of catalyst = 0.18 mL.

Temperature	Catalyst bed	$CUSV(h^{-1})$	Convers	sion (%)	Selectiv	Selectivity (%)		eld (%)	olefins/paraffins	CO/CO ₂
(°C)	thickness (mm)	GHSV (n)	CH ₄	O ₂	C ₂₊	Olefins	C ₂₊	Olefins	(mol/mol)	(mol/mol)
	2.1	50,000	2.4	9.0	52.9	7.4	1.3	0.2	0.16	2.12
	2.65	40,000	5.0	16.6	53.0	11.4	2.7	0.6	0.26	0.98
	3.5	30,000	5.4	19.6	59.8	14.9	3.2	0.8	0.32	0.74
	4.2	25,000	11.6	33.4	58.9	21.1	6.8	2.4	0.54	0.64
750	5.3	20,000	34.0	100	59.7	39.5	20.3	13.4	1.86	0.74
	7.1	15,000	33.9	100	59.5	39.9	20.2	13.5	1.87	0.79
	10.6	10,000	33.0	100	61.9	41.2	20.4	13.6	1.88	0.94
	21.2	5,000	34.3	100	60.7	40.8	20.8	14.0	1.94	0.85
	35.3	3,000	34.5	100	58.1	41.9	20.0	14.5	1.95	0.73
	2.1	50,000	33.0	97.1	57.1	39.3	18.8	13.0	2.06	1.18
	2.65	40,000	33.0	98.3	58.2	40.0	19.2	13.2	2.05	1.23
	3.5	30,000	33.2	100	58.7	40.7	19.5	13.5	2.09	1.03
	4.2	25,000	33.5	100	58.2	40.1	19.5	13.4	2.04	1.00
800	5.3	20,000	33.6	100	58.6	40.6	19.7	13.6	2.09	0.95
	7.1	15,000	33.8	100	57.6	39.9	19.5	13.5	2.07	1.00
	10.6	10,000	33.0	100	58.7	40.7	19.4	13.4	2.08	1.15
	21.2	5,000	32.9	100	58.5	41.4	19.2	13.6	2.21	1.11
	35.3	3,000	32.5	100	56.9	40.6	18.5	13.2	2.28	1.08
	2.1	50,000	32.8	99.2	57.5	41.9	18.9	13.7	2.45	1.63
	2.65	40,000	33.2	99.6	56.3	41.2	18.7	13.7	2.48	1.84
	3.5	30,000	34.4	100	56.1	41.1	19.3	14.1	2.49	1.43
	4.2	25,000	32.4	100	54.5	39.8	17.7	12.9	2.45	1.38
850	5.3	20,000	31.8	100	55.7	41.2	17.7	13.1	2.56	1.08
	7.1	15,000	32.1	100	54.4	40.1	17.5	12.9	2.53	1.28
	10.6	10,000	30.8	100	56.0	41.6	17.2	12.8	2.61	1.61
	21.2	5000	31.0	100	53.8	41.5	16.7	12.9	3.01	1.45
	35.3	3000	30.8	100	51.1	40.6	15.7	12.5	3.40	1.23

Table S7. OCM results with co-fed CO₂ at various GHSV and catalyst bed thickness.^a

 $\overline{^{a}CH_{4}/O_{2}/N_{2}} = 3/1/1$ mol/mol, feed flow rate = 50 mL/min.

Temperature	Catalyst bed	$CHSV(h^{-1})$	Convers	sion (%)			O ₂ -consump	O ₂ -consumption (%) for				
(°C)	thickness (mm)	UH3V (II)	CH ₄	O ₂	СО	CO_2	C_2H_4	C_2H_6	C ₃ H ₆	C ₃ H ₈		
	2.1	50,000	2.4	9.0	3.3	2.1	0.3	0.8	0.00	0.00		
	2.65	40,000	5.0	16.6	4.7	11.1	0.7	1.4	0.03	0.00		
	3.5	30,000	5.4	19.6	5.2	9.3	1.2	1.8	0.05	0.03		
	4.2	25,000	11.6	33.4	8.2	17.1	3.5	3.2	0.20	0.11		
750	5.3	20,000	34.0	100	28.2	50.9	18.3	4.9	1.84	0.29		
	7.1	15,000	33.9	100	28.9	49.1	18.2	4.9	2.10	0.17		
	10.6	10,000	33.0	100	31.6	45.1	19.2	5.1	2.00	0.28		
	21.2	5,000	34.3	100	30.3	47.2	19.0	4.9	2.06	0.26		
	35.3	3,000	34.5	100	31.9	58.0	19.5	5.0	2.20	0.26		
	2.1	50,000	33.0	97.1	36.0	32.6	17.8	5.9	1.78	0.21		
	2.65	40,000	33.0	98.3	35.9	43.6	19.0	4.5	1.98	0.19		
	3.5	30,000	33.2	100	35.1	45.2	18.8	4.1	2.04	0.18		
	4.2	25,000	33.5	100	38.0	50.8	19.3	4.7	2.10	0.17		
800	5.3	20,000	33.6	100	34.0	47.6	18.4	4.4	2.06	0.16		
	7.1	15,000	33.8	100	33.9	45.3	18.2	4.4	2.07	0.16		
	10.6	10,000	33.0	100	35.7	40.3	18.6	4.5	2.15	0.16		
	21.2	5,000	32.9	100	35.4	44.7	19.0	4.3	2.28	0.14		
	35.3	3,000	32.5	100	34.4	49.4	18.3	4.0	2.24	0.12		
	2.1	50,000	32.8	99.2	45.8	35.5	18.5	3.8	2.13	0.07		
	2.65	40,000	33.2	99.6	43.9	36.2	18.3	3.7	2.12	0.07		
	3.5	30,000	34.4	100	43.8	40.8	19.0	3.8	2.23	0.07		
	4.2	25,000	32.4	100	44.0	45.2	18.2	3.7	2.11	0.07		
850	5.3	20,000	31.8	100	35.9	44.4	17.6	3.4	2.09	0.06		
	7.1	15,000	32.1	100	41.1	42.6	17.3	3.4	2.06	0.06		
	10.6	10,000	30.8	100	42.4	36.9	17.8	3.4	2.16	0.05		
	21.2	5,000	31.0	100	41.6	43.7	18.7	3.1	2.33	0.04		
	35.3	3,000	30.8	100	41.0	51.2	17.9	2.6	2.26	0.01		

Table S8. O₂ consumption for the selectivity with co-fed CO₂ at various GHSV adjusted by the catalyst bed thickness.^a

 $^{a}CH_{4}/O_{2}/N_{2} = 3/1/1$ mol/mol/mol, feed flow rate = 50 mL/min.

Catalysts ^a	Catalysts ^a Na 1s		W 4f		Mn 2p		Si 2p		O 1s		C 1s		Na/W	
	BE (eV)	atom%	BE (eV)	atom%	BE (eV)	atom%	BE (eV)	atom%	BE (eV)	atom%	BE (eV)	atom%	(atom/atom)	
Fresh catalyst	1071.8	8.17	34.6	2.19	641.4	0.19	102.8	23.19	532.5	51.72	284.6	14.97	3.7	
With N_2 only (top) ^b	1072.1	7.48	34.7	1.17	641.6	2.55	102.7	24.35	532.5	53.89	284.6	10.56	6.4	
With N_2 only (bottom) ^b	1071.9	8.81	34.4	1.41	641.6	2.03	102.5	22.17	532.4	52.24	284.6	13.34	6.2	
With CO ₂ co-fed (top) ^b	1072.0	5.91	34.6	1.24	641.2	1.18	102.7	22.46	532.5	51.38	284.6	17.84	4.8	
With CO ₂ co-fed (bottom) ^b	1072.0	6.53	34.7	1.34	641.4	0.61	102.7	23.51	532.5	53.55	284.6	14.46	4.9	

Table S9. Observed XPS binding energies (eV) and near-surface compositions (atom%) of the Na₂WO₄/Mn/SiO₂ catalysts.

 a_5 wt% of Na₂WO₄ and 2 wt% of Mn for all catalysts.

^bSpent catalysts.