Electronic Supplementary Information

Functionalization of MOF-5 with mono-substituent: the effect on the

drug delivery behavior

```
Mengru Cai, a Liuying Qin, a Longtai You, a Yu Yao, a Huimin Wu, a Zhiqin Zhang, a Lu Zhang, *c Xingbin
Yin *a and Jian Ni*ab
a School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
b Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing
100029, China.
c Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive
Cancer Center, University of California Davis, Sacramento, CA, USA.
* Correspondence author. E-mail: lluzhang@ucdavis.edu (L.Z.); yxbtcm@163.com (X.Y.);
602054@bucm.edu.cn (J.N.)
```


Fig. S1 PXRD patterns (a) and FTIR (b) spectra of MOF-5, $\mathrm{NH}_{2}-$ MOF-5, $\mathrm{CH}_{3}-\mathrm{MOF}-5, \mathrm{Br}-\mathrm{MOF}-5, \mathrm{HO}-\mathrm{MOF}-5$ and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{MOF}-5$.

Fig. S2 Pore size distribution of MOFs calculated by the Horvath - Kawazoe model, MOF-5 (a), NH2-MOF-5 (b), CH_{3}-MOF-5 (c), Br-MOF-5 (d), HO-MOF-5 (e) and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{MOF}-5$ (f).

Fig. S3 FTIR spectra of ORI@MOF-5 (a), ORI@NH2-MOF-5 (b), ORI@CH3 ${ }_{3}$ MOF-5 (c), ORI@Br-MOF-5 (d), ORI@HO-MOF-5 (e) and ORI@CH ${ }_{2}=\mathrm{CH}-\mathrm{MOF}-5$ (f).

Fig. S4 The new distribution model simulation of ORI release curve.

Table S1 The fitting results of ORI@MOFs in the zero order, first order, Higuchi and Riter-Peppas model.

MOFs	pH	Model	Equation	R^{2}
MOF-5	5.5	zero order equation	$\mathrm{Mt}=0.6331 \mathrm{t}+44.242$	0.3931
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0146 \mathrm{t}-0.6777$	0.4884
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=8.9591 \mathrm{t}^{1 / 2}-1.4634$	0.6392
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.2281 \operatorname{lnt}-1.0566$	0.8431
	7.4	zero order equation	$\mathrm{Mt}=0.6812 \mathrm{t}+38.965$	0.4562
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0147 \mathrm{t}-0.5624$	0.5576
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=9.4012 \mathrm{t}^{1 / 2}-1.311$	0.7021
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.2749 \mathrm{lnt}-1.262$	0.8648
NH_{2}-MOF-5	5.5	zero order equation	$\mathrm{Mt}=0.315 \mathrm{t}+18.966$	0.4820
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0042 \mathrm{t}-0.217$	0.5322
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=21.008 \mathrm{t}^{1 / 2}-1.6755$	0.7096
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.2396 \operatorname{lnt}+2.7074$	0.8596
	7.4	zero order equation	$\mathrm{Mt}=0.2718 \mathrm{t}+19.5$	0.3955
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0035 \mathrm{t}-0.2245$	0.4301
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=20.79 \mathrm{t}^{1 / 2}-1.5495$	0.6307
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.2203 \mathrm{lnt}+2.7442$	0.8160
CH_{3}-MOF-5	5.5	zero order equation	$\mathrm{Mt}=0.2036 \mathrm{t}+30.002$	0.1810
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0028 \mathrm{t}-0.3726$	0.1976
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=14.375 \mathrm{t}^{1 / 2}-1.2566$	0.3694
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.106 \operatorname{lnt}+3.3485$	0.5892
	7.4	zero order equation	$\mathrm{Mt}=0.2555 \mathrm{t}+29.047$	0.2345
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0036 \mathrm{t}-0.3613$	0.2556
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=0.0235 \mathrm{t}^{1 / 2}+0.166$	0.5950
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.1567 \operatorname{lnt}+3.2213$	0.6537
Br-MOF-5	5.5	zero order equation	$\mathrm{Mt}=0.3009 \mathrm{t}+34.578$	0.2182
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0045 \mathrm{t}-0.4568$	0.2344
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=11.498 \mathrm{t}{ }^{1 / 2}-1.0276$	0.4286
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.1682 \operatorname{lnt}+3.3619$	0.6267
	7.4	zero order equation	$\mathrm{Mt}=0.3274 \mathrm{t}+37.948$	0.2112
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0051 \mathrm{t}-0.522$	0.2234
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=10.332 \mathrm{t}^{1 / 2}-0.9569$	0.4231
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.1712 \operatorname{lnt}+3.4454$	0.6278
HO-MOF-5	5.5	zero order equation	$\mathrm{Mt}=0.023 \mathrm{t}+2.5558$	0.2853
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0002 \mathrm{t}-0.026$	0.2884
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=183.59 \mathrm{t}^{1 / 2}-1.8995$	0.4895
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.1229 \mathrm{lnt}+0.8853$	0.7505
	7.4	zero order equation	$\mathrm{Mt}=0.0166 \mathrm{t}+2.5879$	0.1636
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0002 \mathrm{t}-0.0263$	0.1644
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=163.14 \mathrm{t}^{1 / 2}-1.1223$	0.3511
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.1046 \operatorname{lnt}+0.8946$	0.5710
$\begin{aligned} & \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{MOF}- \\ & 5 \end{aligned}$	5.5	zero order equation	$\mathrm{Mt}=0.0894 \mathrm{t}+8.7941$	0.3194
		first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.001 \mathrm{t}-0.093$	0.3320
		Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=52.214 \mathrm{t}{ }^{1 / 2}-1.8884$	0.5330
		Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.1458 \mathrm{lnt}+2.0822$	0.7665
		zero order equation	$\mathrm{Mt}=0.0655 \mathrm{t}+8.013$	0.2213
	7.4	first order equation	$\ln \left(1-\mathrm{Mt} / \mathrm{M}_{\infty}\right)=-0.0007 \mathrm{t}-0.0843$	0.2258

	Higuchi equation	$\mathrm{Mt} / \mathrm{M}_{\infty}=53.189 \mathrm{t}^{1 / 2}-1.3187$	0.4285
	Ritger-Peppas equation	$\ln \left(\mathrm{Mt} / \mathrm{M}_{\infty}\right)=0.139 \operatorname{lnt}+1.9691$	0.6476

