Supporting Information Hyper Oxygen Incorporation in CeF₃: A New Intermediate-Band

Photocatalyst for Antibiotic Degradation under Visible/NIR Light

Bing Han^a, Siqi Yu^a, Dian Zhao^{a,b}, Yunchao Lou^a, Jiayang Gao^a, Zhe Liu^a, Zhiyu Wang^{a,*} and

Guodong Qian^{a,*}

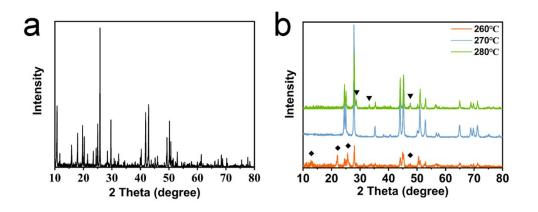
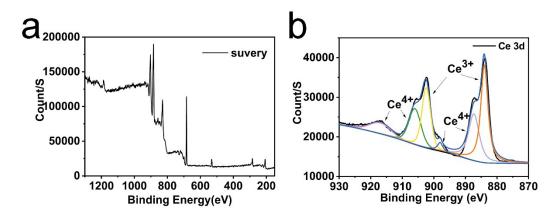
^a State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang

University, Hangzhou 310027, China

Corresponding Author: Prof. Zhiyu Wang, Prof. Guodong Qian

E-mail: wangzhiyu@zju.edu.cn, gdqian@zju.edu.cn

^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China

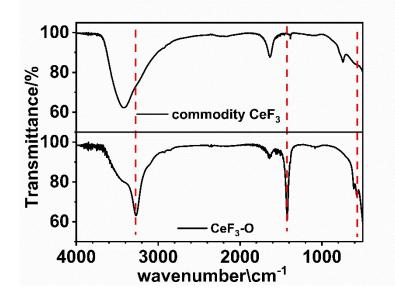

Figure S1. the typical XRD patterns of the precursor JCPDS NO.70-4378(a); samples calcined at different temperature(b). \blacklozenge sign is the precursor ; \blacktriangledown sign is CeO₂ (JCPDS NO. 08-0045).

Table S1. The element content of CeF₃-O

Element	Ce	F	0
Atomic %	21.45	62.82	15.73

Figure S2. The survey spectrum of CeF₃-O XPS: Ce 3d5 (884.1 eV), F 1s (684.4 eV), O 1s (531.7 eV), Ce Auger (830.0 eV), and Ce 3d3 (902.4 eV) (a); The spectrum of Ce 3d (b).

Figure S3. FTIR spectra of commercial CeF₃ and CeF₃-O. The peak at 750 cm⁻¹ of commercial CeF₃ is attributed to-CH₂-, and it maybe from organ impurity.

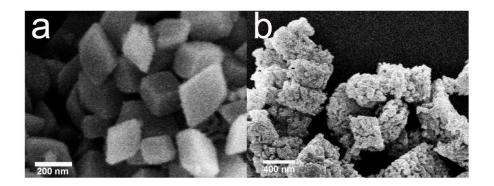


Figure S4. SEM of the precursor $H_{25.5}(NH_4)_{10.5}Ce_9O_{27}F_{18}$ (a) and CeF_3 -O(b)

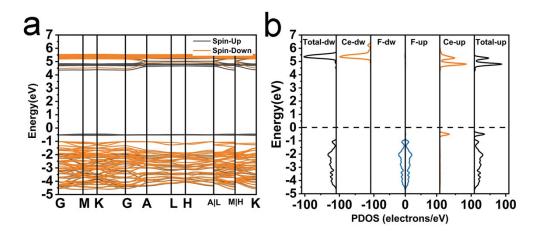


Figure S5. The calculated band structure and DOS of pristine CeF₃.

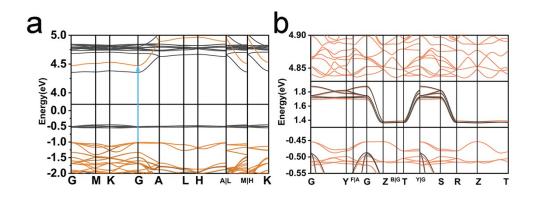


Figure S6. partial enlargement of DFT calculated band structure of pristine CeF₃ and CeF₃-O.

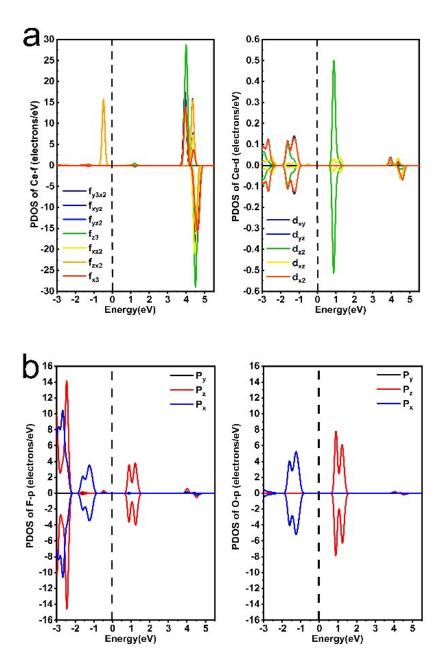
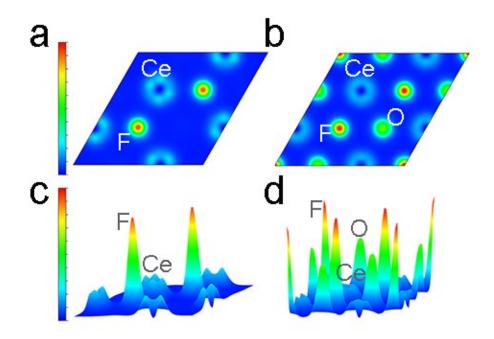
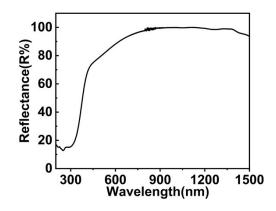
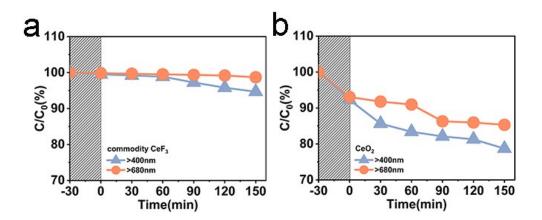
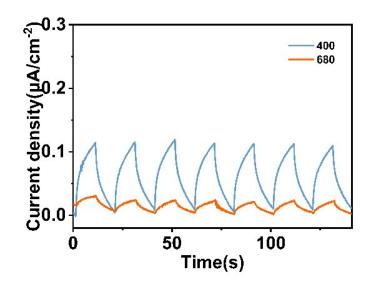



Figure S7. PDOS of Ce(a), O and F(b).

Figure S8. Two dimensional charge density distribution plots of pristine CeF_3 (a,c) and CeF_3 -O (b,d) on [001] plane.

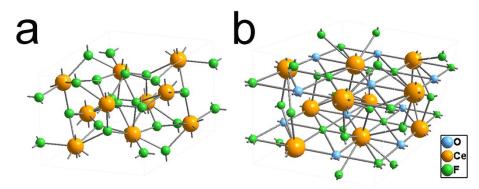

Figure S9. UV–Vis–NIR diffuse reflectance absorption (DRS) spectrum of CeF₃-O.

Figure S10. Photodegradation of TC-HCl by CeF₃(a) and CeO₂(b) under different cutoff filters (λ >400 nm and λ >680 nm). the photodegradation of TC-HCl by CeO₂ is is because the filter (cutoff 400nm) has an optical edge extending to about 380nm. Compared with both of commercial CeF₃ and CeO₂ under visible and NIR light, the CeF₃-O has excellent photocatalysis activity under visible light. CeO₂ was synthesized by the similar calcination of precursor H_{25.5}(NH₄)_{10.5}Ce₉O₂₇F₁₈ at 600°C for 1h.

Figure S11. Photocurrent responses of the CeF₃-O under visible light irradiation(λ >400 nm) and near-infrared light irradiation(λ >680 nm). The CeF₃-O under visible light showed the stronger photocurrent transient response in comparison to that of near-infrared light, indicating the higher charge separation efficiency.

Figure S12 the structure of pristine CeF_3 (a) and CeF_3 -O (b)

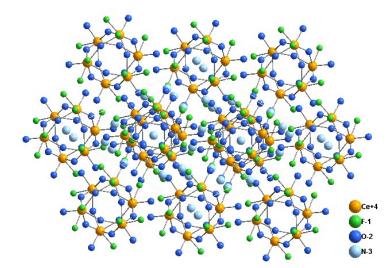


Figure S13 the structure of precursor $H_{25.5}(NH_4)_{10.5}Ce_9O_{27}F_{18}$

Configuration	CeF ₃ -O		
Lattice parameter (A ^o)	a 7.128	b 7.128	c 7.288
Cell angle	α 90°	β 90 °	γ 120 °
Cel	0.33333	0.33333	0.00000
F1	0.38000	0.04600	0.16000
F2	0.33333	0.66667	0.08330
F3	0.00000	0.00000	0.25000
0	0.33333	0.33333	0.25000

Table S2. Details of calculate structure for CeF_3 -O.

Table S3. The location and number of k-points

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5
6 Z_2 0 0	-0.5
	0.5
7 8 0 05	-0.5
7 S 0 0.5	0
8 R 0 0.5	0.5
9 R_2 0 0.5	-0.5
10 DELTA_0 -0.33321 0.33320	07 0
11 F_0 0.333207 0.66679	03 0
12 B_0 -0.33321 0.33320	07 0.5
13 B_2 -0.33321 0.33320	-0.5
14 G_0 0.333207 0.66679	0.5
15 G_2 0.333207 0.66679	-0.5