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Supplementary Note 1: Experimental setup for high-vield graphene synthesis

In order to fabricate large amounts of GNSPs efficiently, we built a PECVD deposition system
with eight chambers in parallel shown in Fig. S1. Input of hydrogen and methane gas is controlled
by mass flow controllers (MFCs), and input of 3-chloropyridine is controlled by a leak valve which
is connected to a vacuum sealed vial. The pressure is measured by a pressure gauge (PG), and the
gas composition is measured by a residual gas analyser (RGA). The gases are split to eight quartz
chambers which each have Evenson cavities connected to microwave power sources. A cold trap
(CT) captures harmful by products of the reaction (HCI, etc), and a vacuum pump (VP) is
continually pumping the system. The pressure is controlled by a throttle valve (TV) that opens and
closes with feedback from the pressure gauge to maintain a pressure setpoint. We have also
measured the pressure in the quartz chamber, and under the conditions of this experiment (i.e., a
pressure of 4.8 Torr at PG and hydrogen and methane flow rates of 48 sccm and 5 scem,
respectively) the pressure in the chamber is ~500 mTorr, consistent with the previous report of

Hsu et al [14].
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Fig. S1. Schematic of the eight-chamber PECVD graphene growth system.



Supplementary Note 2: Determining the vield of N-GNSPs per chamber

The yield of N-GNSPs synthesized on copper substrates as a function of time is shown in Fig.
S2 for one PECVD chamber. A fit of these data reveal a growth rate of ~ 6 mg/cm?/hr. Our
deposition chamber affords ~ 1 cm? substrates within each plasma cavity, so our eight chamber

growth yields a growth rate of ~ 48 mg/hr of N-GNSPs.
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Fig. S2. Yield of N-GNSPs-vs.-time obtained from one PECVD growth chamber.



Supplementary Note 3: Procedure for fabricating coin cells of lithium ion
batteries (LIBs)

The procedure for fabricating two types of LIB coin cells with N-GNSPs as the anode is

schematically shown below in Fig. S3.

As grown N-GNSP electrode coin cell
fabrication procedure

Typical coin cell fabrication procedure

' As grown N-GNSP on copper

Remove graphene from growth

D substrate. Mix with SuperP, PVDF
and NMP. ! As grown N-GNSP on copper

Assemble directly into coin cell

Spread slurry over copper foil,
bake at 120C under vacuum and .

punch out %" diameter electrodes | * » Cap

Cu/GNSP electrode

y y
- <
// /’/
Separator Press together|

Lithium metal electrode [ 10 Make coin
cell battery

- — Spacer

= Cap .
~_———___~ Spring

Cu/GNSP electrode l l Case

Separator Press together]
= to make coin
cell battery

Lithium metal electrode

—— Spacer

-~~~ Spring

l ' Case

Fig. S3. Schematic of typical coin cell fabrication (left) and fabrication of coin cell using N-
GNSP not removed from the growth substrate



Supplementary Note 4: Procedure for estimating GNSPs and N-GNSPs
capacitance

According to the widely accepted Electrochemical Methods by Bard and Faulkner,' double
layer capacitance can be estimated from the slope of the voltage vs. time response due to a current
step. To appropriately perform this measurement, however, the electrochemical response must be
due to non-faradaic (capacitive) processes rather than faradaic (redox) processes, which can be
ensured by measuring the voltage vs time response shortly after the current step, as non-faradaic
processes tend to be much faster than faradaic processes. Therefore, we used the first ten seconds
of the first galvanostatic discharge of GNSPs and N-GNSPs to estimate their capacitances (shown
in Fig. S4). The fairly linear slopes indicate that the electrochemical response during this time is,
in fact, dominated by non-faradaic processes, as faradaic processes tend to cause voltage plateaus

in galvanostatic measurements. The capacitance is calculated according to

Current

Capactiance =
Slope

The respective slopes of the GNSPs and N-GNSPs discharge curves are -0.0093 V/s and -0.018
V/s, corresponding to capacitances of 5.6 F/g and 10.8 F/g.
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Fig. S4. First ten seconds of GNSPs and N-GNSPs first galvanostatic discharge curve.
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Fig. S5. Raw data (before smoothing) of Fig. 5, showing that the same peaks and shifts are still
visible and apparent, which validates the data treatment used to generate Fig. 5.
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