Electronic Supplementary Material

Designing 2D-2D g- $C_3N_4/Ag:ZnIn_2S_4$ nanocomposites for high-performance conversion of sunlight energy to hydrogen fuel and meaningful reduction of pollution

Yu Gao^{#a,b}, Kun Qian^{#a,b}, Baotong Xu^a, Fu Ding^{*a,b}, Valerian Dragutan^c, Ileana Dragutan^{*c}, Yaguang Sun^{a,b}, Zhenhe Xu^{*a,b}

^aThe Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, College of Materials and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China.

^bKey Laboratory of Resource Chemical Technology and Materials (Ministry of Education), Shenyang University Chemical Technology, Shenyang, 110142, PR China

^cInstitute of Organic Chemistry, Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania

E-mail: dingfu@syuct.edu.cn (F. Ding), idragutan@yahoo.com (I. Dragutan), xuzh@syuct.edu.cn (Z. Xu)

[#]These authors contributed equally to this work.

Fig. S1. TEM image of the $Ag:ZnIn_2S_4$ sample.

Fig. S2. XPS survey patterns of the $g-C_3N_4$, Ag:ZnIn₂S₄, and $g-C_3N_4/20$ wt% Ag:ZnIn₂S₄ nanocomposites.

Fig. S3. Photographs of the g- C_3N_4 , Ag:ZnIn₂S₄, and g- C_3N_4 /Ag:ZnIn₂S₄ samples.

Fig. S4. XRD patterns of the $g-C_3N_4/20$ wt% Ag:ZnIn₂S₄ sample before and after photocatalytic water splitting.

Fig. S5. TEM image of the g- $C_3N_4/20$ wt% Ag:ZnIn₂S₄ sample after photocatalytic water splitting.

Fig. S6. XRD patterns of the g- $C_3N_4/20$ wt% Ag:ZnIn₂S₄ sample before and after photodegradation of MO.

Fig. S7. TEM image of the g- $C_3N_4/20$ wt% Ag:ZnIn₂S₄ sample after photodegradation of MO.