Supporting information

Controlled preparation of multiply mesoporous CoAl-LDHs nanosheet for high performance of NO_x detection at room

temperature

Di Wang^a, Zhi Liu^a, Ye Hong^a, Chong Lin^a, Qingjiang Pan^a, Li Li^{*a, b} and Keying Shi^{*a}

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; Key Laboratory of Physical Chemistry, School of Chemistry and Material Science,

Heilongjiang University, Harbin, 150080, P. R. China.

^b College of Advanced Agriculture and Ecological Environment Heilongjiang

University, Harbin 150080, P. R. China.

Corresponding Author Fax: +86 451 8660 4920; Tel: +86 451 8660 9141

E-mail: lili1993036@hlju.edu.cn, shikeying2008@163.com

Gas sensors	Operation temperature (°C)	Gas (concentration)	$\begin{array}{c} \text{Response} \\ (R_a/R_g) \end{array}$	Response/ recovery time	Stability (day)	Refer ences
ZnO/ZnFe ₂ O ₄	Room	NO_x	76%	1.3 s/	35	17
composites	temperature	(100 ppm)				
PS@Co-LDH	200°C	Dimethyl sulfide (125 ppm);	3;	/		18
		Ethanol (4.3 ppm)	2.48	/		
PANI/ZnTi-LDHs	Room temperature	NH ₃ (50ppm)	39.52	3/110s		19
Chlorine	Room	СО	0.04	/		20
intercalated LDH	temperature	CO_2	0.1			
		NO	0.13			
		NO ₂	0.11			
		CH_4	0.17			
		(125 ppm)				
NZAO	Room	NO_x	9.16	6/26 s	350	21
	temperature	(100 ppm)				
NCDH-20	Room	NO_x	70%	0.6 s/		22
	temperature	(97 ppm- 0.97ppm)	6%	10 s/		
hierarchical α-	Room	NO_x	32.5%	13 s/	35	23
Ni(OH) ₂ flower-	temperature	(97 ppm)				
like architectures						
MgAl-LDHs	Room	NO_x	76%	1.3 s/	35	24
	temperature	(100 ppm)				
CoAl-LDHs	Room	NO_x	17.09	4.27/38.9	60	Our
	temperature	(100 ppm-		3s		work
		0.01ppm)	1.19	1.07/46.6s		

 Table S1. Gas sensing properties of CA2-1 sample compared with the references

 based on LDHs materials.

		C	oncentra	uons at i		perature.			
Sample	CA-60			CA2-1			CA-120		
NO _x	Res.	T $_{R1}$ /s	T_{R2}/s	Res.	T $_{R1}$ /s	T $_{R2}$ /s	Res.	T $_{R1}$ /s	T_{R2}/s
(ppm)									
100	3.54	7.63	41.32	17.09	4.27	38.93	2.78	4.53	58.76
50	3.27	5.26	42.04	14.53	5.33	39.07	2.56	5.27	62.57
30	3.15	7.38	41.37	10.98	5.33	34.13	2.07	8.23	65.32
10	1.67	2.96	36.07	5.17	5.87	38.93	1.83	4.32	69.31
5	1.52	2.34	38.75	4.36	7.47	35.20	1.69	4.15	54.02
3	1.38	1.98	31.85	3.17	7.47	47.20	1.54	5.87	53.18
1	1.17	1.65	42.38	2.66	11.20	31.47	1.36	5.96	61.08
0.5				2.29	16.33	49.80	1.30	5.69	59.03
0.3				2.04	17.07	46.40	1.21	4.20	60.68
0.1				1.89	6.93	53.27	1.15	4.76	58.37
0.05				1.60	9.60	49.07			
0.03				1.34	5.33	51.53			
0.01				1.19	1.07	46.40			

Table S2. The response, response time and recovery time results of CoAl-LDHs sensors (Co : Al = 2 : 1, hydrothermal time was 6 h) under the different NO_x concentrations at room temperature.

*Res.: Response T_{R1} : Response time T_{R2} : Recovery time

CA-60 : Hydrothermally heated at 60°C for 6 h

CA2-1 : Hydrothermally heated at 90°C for 6 h

CA-120 : Hydrothermally heated at 120°C for 6 h

different NO_x concentrations at room temperature.									
Sample	CA-3			CA2-1			CA-9		
NO _x	Res.	T $_{R1}$ /s	T_{R2}/s	Res.	T $_{R1}$ /s	T $_{R2}$ /s	Res.	T $_{R1}$ /s	T $_{R2}$ /s
(ppm)									
100	1.64	4.79	38.42	17.09	4.27	38.93	5.68	6.89	48.75
50	1.57	4.62	37.05	14.53	5.33	39.07	5.37	6.37	52.57
30	1.35	5.38	32.77	10.98	5.33	34.13	3.89	8.51	63.24
10	1.27	5.07	31.20	5.17	5.87	38.93	2.07	7.85	60.18
5	1.24	5.36	42.85	4.36	7.47	35.20	1.93	6.14	56.03
3	1.19	4.01	41.85	3.17	7.47	47.20	1.74	7.58	59.17
1	1.13	4.28	31.59	2.66	11.20	31.47	1.12	6.82	4.09
0.5				2.29	16.33	49.80			
0.3				2.04	17.07	46.40			
0.1				1.89	6.93	53.27			
0.05				1.60	9.60	49.07			
0.03				1.34	5.33	51.53			
0.01				1.19	1.07	46.40			

LDHs sensors (Co : Al = 2 : 1, hydrothermal temperature was 90° C) under the

Table S3. The response, response time and recovery time results of CoAl-

*Res.: Response T_{R1} : Response time T_{R2} : Recovery time

CA-3 : Hydrothermally heated at 90°C for 3 h

CA2-1 : Hydrothermally heated at 90°C for 6 h

CA-9: Hydrothermally heated at 90°C for 9 h

(Revised Supporting information, table S2 and S3, page S3-S4)

Sample		CA3-1			CA2-1			CA1-1	
NO _x	Res.	T $_{R1}$ /s	T $_{R2}$ /s	Res.	T $_{R1}$ /s	T $_{R2}/s$	Res.	T $_{R1}$ /s	T $_{R2}$ /s
(ppm)									
100	4.29	7.46	66.25	17.09	4.27	38.93	7.12	6.98	59.51
50	4.14	8.26	57.62	14.53	5.33	39.07	6.73	7.73	60.75
30	3.60	8.53	62.73	10.98	5.33	34.13	6.29	8.35	62.41
10	2.07	7.50	61.20	5.17	5.87	38.93	2.78	7.82	57.32
5	1.96	8.63	62.58	4.36	7.47	35.20	2.39	6.49	58.20
3	1.72	8.40	71.18	3.17	7.47	47.20	2.17	6.87	63.70
1	1.62	7.82	67.95	2.66	11.20	31.47	1.78	6.95	61.07
0.5	1.54	7.31	68.95	2.29	16.33	49.80	1.58	8.40	57.98
0.3	1.37	7.84	63.20	2.04	17.07	46.40	1.47	8.17	56.31
0.1	1.12	7.28	67.71	1.89	6.93	53.27	1.19	7.62	56.54
0.05				1.60	9.60	49.07			
0.03				1.34	5.33	51.53			
0.01				1.19	1.07	46.40			

Table S4. The response, response time and recovery time results of CoAl-

LDHs sensors (different mole ratio, hydrothermally heated at 90 $^\circ C$ for 6 h) under the

different NO_x concentrations at room temperature.

*Res.: Response T_{R1} : Response time T_{R2} : Recovery time

CA3-1 : The molar ratio of Co : Al = 3 : 1

CA2-1 : The molar ratio of Co : Al = 2 : 1

CA1-1 : The molar ratio of Co : Al = 1 : 1

Fig. S1. Mapping of CA2-1 sample.

Fig. S1. showed that the Mapping of CA2-1 sample was composed of twodimensional nanosheets. It could be seen from the bright image of Fig. S1.(b-f) that elements Co, Al and O were evenly distributed.

Table S5. O1s results of samples							
Sample	Peak position (eV)	Peak area %					
CA1-1	534.4	47.37					
	530.8	52.63					
CA2-1	534.5	57.09					
	530.7	42.91					
CA3-1	533.5	52.41					
	530.8	47.59					

Related References

- S. R. Liu, M. Y. Guan and X. Z. Li, Light irradiation enhanced triethylamine gas sensing materials based on ZnO/ZnFe₂O₄ composites, *Sensors and Actuators B: Chemical*, 2016, 236, 350-357.
- 18 Y. Y. Li, F. Zhou, L. Gao, G. T. Duan, Co₃O₄ nanosheet-built hollow spheres containing ultrafine neck-connected grains templated by PS@Co-LDH and their ppb-level gas-sensing performance, *Sensors and Actuators B*, 2018, **261**, 553-565.
- 19 Y. X. Qin, L. P. Wang and X. F. Wang, A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH₃ detection, *Organic Electronics*, 2019, 66, 102-109.
- 20 D. Polese, A. Mattoccia, F. Giorgi, L. Pazzini, L. D. Giamberardino, G. Fortunato and P.G. Medaglia, A phenomenological investigation on Chlorine intercalated Layered Double Hydroxides used as room temperature gas sensors, *Journal of Alloys and Compounds*, 2017, 692, 915-922.
- X. Y. Zhang, L. Teng, Y. Liu, Z. Liu, J. L. Xue, M. Ikram, M. ullah, L. Li and K.
 Y. Shi, 3D flower-like NiZnAl multimetal oxide constructed by ultra-thin porous nanosheets: A long-term and stable sensing material for NO_x at room temperature, *Sensors and Actuators: B. Chemical*, 2019, **300**, 126-899.
- 22 Y. L. Ge, K. Kan, Y. Yang, L. Zhou, L. Q. Jing, P. K. Shen, L. Li and K. Y. Shi, Highly mesoporous hierarchical nickel and cobalt double hydroxide composite: fabrication, characterization and ultrafast NO_x gas sensors at room temperature, *J. Mater. Chem. A*, 2014, **2**, 4961.
- 23 H. Wang, J. Gao, Z. Li, Y. Ge, K. Kan and K. Y. Shi, One-step synthesis of hierarchical α-Ni(OH)₂ flowerlike architectures and their gas sensing properties for NO_x at room temperature, *CrystEngComm*, 2012, **14**, 6843-6852.
- 24 H. X. Sun, Z. Y. Chu, D. H. Hong, G. Zhang, Y. Xie, L. Li and K. Y. Shi, Threedimensional hierarchical flower-like MgAl-layered double hydroxides:

Fabrication, characterization and enhanced sensing properties to NO_x at room temperature, *Journal of Alloys and Compounds*, 2016, **658**, 561-568.