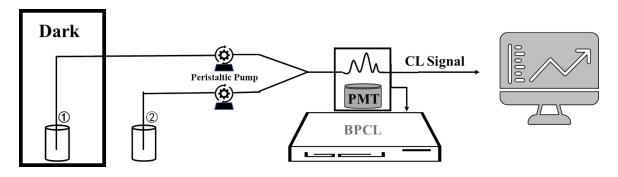

Electronic supplementary information


Wanchao Yu^{a, b}, Fengjie Chen^{a, b}, Yarui Wang^{a, b}, Lixia Zhao*, a, c

^a State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China

^b University of Chinese Academy of Sciences, Beijing 100039, China

^c Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS.

^{*}To whom correspondence should be addressed: E-mail: zlx@rcees.ac.cn (LZ);

Figure S1. CFCL experimental setup: ① Nano-TiO₂ suspension, ② luminol;

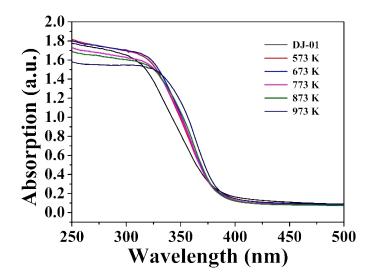


Figure S2. UV-vis diffuse reflectance spectra of TiO₂ nanoparticles.

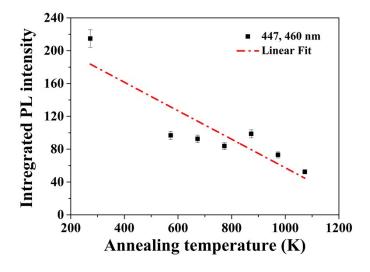
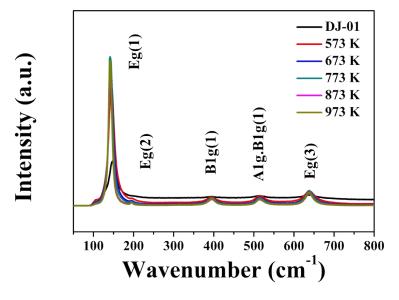



Figure S3. Totally integrated peak intensity at 447 nm and 460 nm for nano-TiO₂ samples.

Figure S4. The Raman spectra of nano-TiO₂ samples.

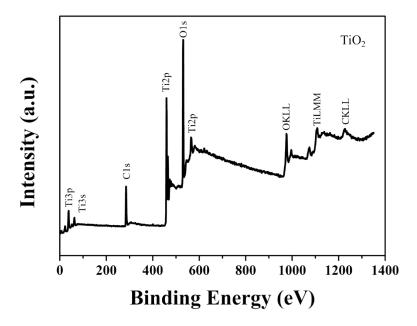


Figure S5. XPS survey scan obtained on TiO₂ (DJ-01) sample.

Table S1. Physical properties of TiO_2 samples.

Samples	Calcination Temperature (K)	Primary Particle size (nm)	Anatase (%)	BET surface area (m² g-1)	Band gap (eV)
DJ-01	Non-calcined	8	100	149	3.10
_	573 K	12	100	88	3.12
_	673 K	17	100	59	3.14
_	773 K	25	100	43	3.16
	873 K	40	100	31	3.20
	973 K	66	100	17	3.20

Table S2. XPS results of different chemical states of O elements at the surface of TiO_2 samples.

Samples	Binding energy (eV)			\mathbf{O}_{L}	O _{-OH}	\mathbf{o}_{s}	Evaluated	
	O1s (O _L)	O1s (O _{-OH})	O1s (O _S)	Ti2p _{2/3}	(%)	(%)	(%)	V _O (%)
Non-calcined	530.21	531.34	532.60	458.61	66.02%	21.43%	12.55%	32.71%
573 K	530.16	531.01	532.05	458.60	79.49%	12.67%	7.84%	18.43%
673 K	530.11	531.04	532.10	458.64	81.67%	10.94%	7.39%	15.10%
773 K	530.26	531.17	532.15	458.66	85.47%	8.42%	6.10%	9.32%
873 K	530.17	531.23	532.22	458.71	86.90%	7.67%	5.43%	7.25%
973 K	530.18	531.34	532.36	458.65	88.27%	6.41%	5.33%	5.17%