### **Supporting Information**

## Azaheterocyclic diphenylmethanol chiral solvating agents for the NMR chiral discrimination of alpha-substituted carboxylic acids

Gao-Wei Li,<sup>a,b</sup> Xiao-Juan Wang, \*a Dan-Dan Cui, a Yu-Fei Zhang, a Rong-Yao Xu, a Shuai-Hua Shi, <sup>a</sup> Lan-Tao Liu, \*<sup>a</sup> Min-Can Wang,<sup>b</sup> Hong-Min Liu, <sup>b</sup> and Xin-Xiang Lei \*<sup>c</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, 476000, P.R. China. <sup>b</sup> School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P.R. China. <sup>c</sup> School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, P.R. China.

P.R. China.

| 1. General methods                                                                                        | 2    |
|-----------------------------------------------------------------------------------------------------------|------|
| 2. General procedure for the synthesis of the chiral solvating agents                                     | 2    |
| 2.1. Synthetic procedures of compound N-protected aza-heterocyclic diphenylmethanols                      | 2    |
| 2.2. General procedure for the deprotection by hydrolysis reaction                                        | 3    |
| 3. Determination of enantiomeric purity of mandelic acid                                                  | 4    |
| 4. Discrimination ability of CSA 1 toward racemic guests 1-25                                             | 4    |
| 5. <sup>1</sup> H NMR, <sup>13</sup> C NMR spectra of CSAs                                                | 5    |
| 6. <sup>1</sup> H NMR spectroscopy CSA 1-4 and racemic 3,5-difluoro-mandelic acid                         | 10   |
| 7. <sup>1</sup> H NMR spectroscopy (S)-aziridinyl diphenylmethanol and various racemic $\alpha$ -substitu | ıted |
| carboxylic acids                                                                                          | 13   |
| 8. <sup>19</sup> F NMR spectroscopy (S)-aziridinyl diphenylmethanol and fluorine-containing               | α-   |
| substituted carboxylic acids                                                                              | 26   |

### 1. General methods

Solvents were dried with standard methods and freshly distilled prior to use if needed. Optical rotations were measured with Perkin Elmer, model 341 Polarimeter at 20 °C in CHCl<sub>3</sub>. CSA **3** was prepared from commercial methyl 1-tritylaziridine-2-carboxylate, others chemicals were either purchased or purified by standard techniques. Melting pointswere obtained with a Yuhua X-5 micromelting point apparatus and uncorrected. <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra were measured on 400 MHz Brucker spectrometer in CDCl<sub>3</sub> solutions with tetramethylsilane (TMS). *J* values are given in Hz. All spectra were recorded using 16 scans at 298 K. An exponential window function with a line-broadening factor of 1 Hz was applied to the FID before Fourier transformation. Column chromatography was performed using Silica gel (300-400 mesh).

### 2. General procedure for the synthesis of the chiral solvating agents

The chiral aza-heterocycle-containings diphenylmethanols can be readily carried out in a twostep sequence in good yield from commercially available methyl 1-aza-heterocycle-2-carboxylate with Grignard reagent and hydrolysis reaction, the route of synthesis as shown in Scheme S1.



Scheme S1. Preparation and structures of aza-heterocycle-containing diphenylmethanols.

# 2.1. Synthetic procedures of compound *N*-protected aza-heterocyclic diphenylmethanols

To a Grignard reagent solution prepared from 6.3 mL (60 mmol) of bromobenzene in 5 mL of THF and 1.46 g (60 mmol) of magnesium in 10 mL of THF was gradually added 15 mmol of methyl 1-aza-heterocycle- 2-carboxylate dissolved in 5 mL of THF at 20 °C. The mixture was then allowed to reach room temperature. After stirring for 12 h, the reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (8 mL) at 0 °C. The product was separated and the aqueous phase extracted with ethyl acetate ( $3 \times 10$  mL). The combined organic phases were washed with brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The resulting residue was purified by column chromatography with petroleum ether /ethyl acetate as the developing solvent to give the *N*-protected aza-heterocyclic diphenylmethanols.

#### 2.2. General procedure for the deprotection by hydrolysis reaction

*N*-protected aza-heterocyclic diphenylmethanols (3 mmol) was dissolved in  $H_2SO_4/H_2O/CH_3OH$  (3/8/60, 18 mL). The solution was stirred at room temperature for 24 h, the white precipitate formed was removed by filtration from the mixture, and then to the filtrate NaOH 30% w/w solution was carefully added simultaneously to adjust the solution mixture to around 10 pH and the solution was extracted with ethyl acetate (3 × 10 mL), the combined extracts were dried over Na<sub>2</sub>SO<sub>4</sub>. The organic phase was then concentrated in vacuo and the residue was purified by silica gel column chromatography with petroleum ether /ethyl acetate (4:1, v/v) as eluent to afford (*S*)-CSA-1 as a white solid.

(*S*)-aziridinyl diphenylmethanol 1: white solid, m. p. =162-163 °C;  $[\alpha]^{25}_{D}$  = -20.5 (*c* 0.294, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.23 (m, 10H), 2.92 (s, 1H), 1.87 (d, *J* = 5.6 Hz, 1H), 1.75 (d, *J* = 3.5 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.3, 145.2, 128.2, 128.1, 127.1, 127.1, 126.5, 126.3, 74.3, 37.0, 22.0; HRMS (EI-TOF): m/z Calculated for C<sub>15</sub>H<sub>15</sub>NO (M<sup>+</sup>): 225.1154; Found: 225.1167.

(*R*)-aziridinyl diphenylmethanol *ent*-1: white solid, m. p. =160-162 °C;  $[\alpha]^{25}_{D}$  = +23.4 (*c* 0.20, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 – 7.23 (m, 10H), 2.92 (s, 1H), 1.88 (d, *J* = 5.6 Hz, 1H), 1.74 (d, *J* = 3.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.3, 145.1, 128.2, 128.1, 127.18, 127.17, 126.5, 126.3, 74.3, 37.0, 22.1.

(*S*)-azetidinyl diphenylmethanol **2**: white solid, m. p. =112-113 °C;  $[\alpha]^{25}_{D} = -73.4$  (*c* 0.30, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 – 7.16 (m, 10H), 4.91 (t, *J* = 8.0 Hz, 1H), 3.61 (q, *J* = 7.2 Hz, 1H), 3.18 (ddd, *J* = 8.4, 7.2, 3.2 Hz, 1H), 2.42 – 2.33 (m, 1H), 198 – 1.90 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  146.3, 143.3, 128.1, 128.0, 126.7, 126.6, 126.3, 125.9, 76.5, 64.7, 42.3, 21.9; HRMS (EI-TOF): m/z Calculated for C<sub>16</sub>H<sub>17</sub>NO (M<sup>+</sup>): 239.1310; Found:239.1322.

(S)-pyrrolidinyl diphenylmethanol **3:** The compound was purchased from J&K without purification.

(*S*)-piperidinyl diphenylmethanol **4**: white solid, m. p. =92-95 °C;  $[\alpha]^{25}_{D} = -80.5$  (*c* 0.250, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (dd, J = 8.8, 1.6 Hz, 2H), 7.46 (dd, J = 8.8, 1.6 Hz, 2H), 7.39 – 7.10 (m, 6H), 4.31 (br, 1H), 3.53 (dd, J = 10.8, 2.8 Hz, 1H), 3.01 (dq, J = 10.8, 2.0 Hz, 1H), 2.72 (dt, J = 11.7, 2.7 Hz, 1H), 1.76 – 1.54 (m, 3H), 1.45 – 1.20 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.3, 144.2, 128.5, 127.9, 126.8, 126.3, 126.0, 125.5, 78.5, 61.7, 46.7, 25.6, 25.5, 24.5;

HRMS (EI-TOF): m/z Calculated for C<sub>18</sub>H<sub>21</sub>NO (M<sup>+</sup>): 267.1623; Found:267.1589.

### 3. Determination of enantiomeric purity of mandelic acid

To determine the enantiomeric purity of the carboxylic acids, ten 4-MeO-MA samples with-100%, -80%, -60%, -40%, -20%, 0%, 20%, 40%, 60%, 80%*ee* were prepared at a concentration of 10 mM in CDCl<sub>3</sub>, respectively, expressed as % *R* in the data. The CAS **1** was also dissolved in CDCl<sub>3</sub> at a concentration of 10 mM. Then 250  $\mu$ L of CAS **1** and 250  $\mu$ L of 4-MeO-MA with different *ee*'s were mixed in the NMR tube generating a total concentration of 10 mM with a molar ratio of 1:1. Then the enantiomeric purity of the carboxylic acids was determined by <sup>1</sup>H NMR method. The plotting of gravimetric *ee* value (y axis) versus NMR observed *ee* value (x axis) presented excellent linearity with R<sup>2</sup>=0.99995.

### 4. Discrimination ability of CSA 1 toward racemic guests 1-25

At first, CSA **1**, and the guests were separately dissolved in CDCl<sub>3</sub> with a concentration of 10 mM. Then, 0.25 mL of CSA **1** and 0.25 mL guest were added to NMR tubes, so that the total volume was 0.5 mL, and the concentration of CSA **1** and guest was 10 mM. The <sup>1</sup>H NMR spectra of all samples were recorded on a 400 MHz spectrometer.



Figure S1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1.



Figure S2. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1.



Figure S3. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of (*R*)-aziridinyl diphenylmethanol *ent*-1.



Figure S4. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) of (*R*)-aziridinyl diphenylmethanol *ent*-1.





Figure S5. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of (*S*)-azetidinyl diphenylmethanol 2.



Figure S6. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) of (*S*)-azetidinyl diphenylmethanol 2.



Figure S7. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of (*S*)-pyrrolidinyl diphenylmethanol 3.



Figure S8. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) of (*S*)-pyrrolidinyl diphenylmethanol 3.



Figure S9. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of (*S*)-piperidinyl diphenylmethanol 4.



Figure S10. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) of (*S*)-piperidinyl diphenylmethanol 4.

### 6. <sup>1</sup>H NMR spectroscopy CSA 1-4 and racemic 3,5-difluoro-mandelic acid



Figure S11. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-3,5-difluoro-mandelic acid.



Figure S12. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-azetidinyl diphenylmethanol 2 and (±)-3,5-difluoro-mandelic acid.



Figure S13. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-pyrrolidinyl diphenylmethanol 1 and (±)-3,5-difluoro-mandelic acid.



Figure S14. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-piperidinyl diphenylmethanol 4 and (±)-3,5-difluoro-mandelic acid.



Figure S15. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*R*)-aziridinyl diphenylmethanol *ent*-1 and (±)-3,5-difluoro-mandelic acid.



Figure S16. Evolution of <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) signals of methine and methoxy group of (*rac*)-4-MeO-MA by NMR titration experiments.

7. <sup>1</sup>H NMR spectroscopy (S)-aziridinyl diphenylmethanol and various racemic αsubstituted carboxylic acids



Figure S1a. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-mandelic acid.



Figure S1b. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-4-methoxy-mandelic acid.



Figure S1c. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-4-bromo-mandelic acid.



Figure S1d. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-4-fluoro-mandelic acid.



Figure S1e. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-4-trifluoromethyl-mandelic acid.



Figure S1f. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-3,5-difluoro-mandelic acid.



Figure S1g. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2,3-difluoro-mandelic acid.



Figure S1h. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-4-hydroxy-3-methoxy-mandelic acid.



Figure S1i. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-3-fluoro-mandelic acid.



Figure S1j. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-3-chloro-mandelic acid.



Figure S1k. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-fluoro-mandelic acid.



Figure S1l. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-chloro-mandelic acid.



Figure S1m. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and (±)-2-bromo-mandelic acid.



Figure Sln. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-hydroxy-3-methylbutyric acid.



Figure S10. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-hydroxyisocaproic acid.



Figure S1p. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-hydroxyhexanoic acid.



Figure S1q. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-hydroxyoctanoic acid.



Figure S1r. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-hydroxy-3-phenylpropanoic acid.



Figure S1s. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and ( $\pm$ )- $\alpha$ -chloro-phenylacetic acid .



Figure S1t. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and ( $\pm$ )- $\alpha$ -bromo-phenylacetic acid.



Figure S1u. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-bromopropanoic acid.



Figure S1v. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-phenoxypropanoic acid.



Figure S1w. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and (±)-2-methoxy-2-phenylacetic acid.



Figure S1x. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2-methoxypropanoic acid.



Figure S1y. <sup>1</sup>H NMR Spectra (400 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2,3-bis(benzoyloxy)succinic acid.

8. <sup>19</sup>F NMR spectroscopy (S)-aziridinyl diphenylmethanol and fluorine-containing  $\alpha$ -substituted carboxylic acids



Figure S2a. <sup>19</sup>F NMR Spectra (376 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and  $(\pm)$ -3,5-difluoro-mandelic acid



Figure S2b. <sup>19</sup>F NMR Spectra (376 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and  $(\pm)$ -2-fluoro-mandelic acid



Figure S2c. <sup>19</sup>F NMR Spectra (376 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and (±)-3-fluoro-mandelic acid



Figure S2d. <sup>19</sup>F NMR Spectra (376 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and  $(\pm)$ -4-fluoro-mandelic acid



Figure S2e. <sup>19</sup>F NMR Spectra (376 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and (±)-2,3-difluoro-mandelic acid



Figure S2f. <sup>19</sup>F NMR Spectra (376 MHz, CDCl<sub>3</sub>) of (*S*)-aziridinyl diphenylmethanol 1 and (±)-2,5-difluoro-mandelic acid



Figure S2g. <sup>19</sup>F NMR Spectra (376 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and  $(\pm)$ - $\alpha$ -fluoro-phenylacetic acid.



Figure S2h. <sup>19</sup>F NMR Spectra (376 MHz, CDCl<sub>3</sub>) of (S)-aziridinyl diphenylmethanol 1 and (±)-4-trifluoromethyl-mandelic acid