Supporting Information

for

Di-functional Luminescent Sensors Based on Y³⁺ Doped Eu³⁺ and Tb³⁺ Coordination Polymers: Fast Responsive and Visible Detection of Cr³⁺, Fe³⁺ ions in aqueous solutions and Acetone

Hongyan Liu, ^a Yang Liu, ^a Yu Meng, ^a Xiaolei Shi,^a Junshan Sun,^b Limin Zhao,^a Diming Chen,^c Hongguo Hao,^{*a} Dacheng Li,^{*a} Jianmin Dou,^a and Jun Han^d

^aShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, People's Republic of China

E-mail:<u>hhg207@126.com</u>, <u>lidacheng62@163.com</u>.

^bCollege of Chemistry and Chemical Engineering, Taishan University, Taian 271000, Shandong Province, People's Republic of China

^cSchool of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China

Table S1

Complex	mplex 1-Y 1-Eu ¹ 1-Tb ¹		1-Tb ¹	1-Gd ²	
Crystal data	1989014	1814159	1814160	1864276	
	[Y(C ₁₆ H ₆ O ₈) _{0.5} (C ₄ H ₉ ON)	[Eu ₂ (C ₁₆ H ₆ O ₈)(C ₄ H ₆ ON) ₂	[Tb ₂ (C ₁₆ H ₆ O ₈)(C ₄ H ₆ ON	[Gd(C ₁₆ H ₆ O ₈) _{0.5} (C ₄ H ₉ ON)	
formula	(C ₂ H ₃ O ₂)(H ₂ O)]	$(C_2H_3O_2)_2].4H_2O$	$)_{2}(C_{2}H_{3}O_{2})_{2}]\cdot 4H_{2}O$	$(C_2H_3O_2)(H_2O)]$	
$M_{ m r}$	416.2	988.5	1002.4	484.5	
Temperature/K	298	298	298	298	
crystal size/mm ³	$0.11\times0.14\times0.14$	$0.13 \times 0.16 \times 0.14$	$0.13\times0.12\times0.15$	$0.11\times 0.15\times 0.13$	
Crystal system,	Monoclinic	Monoclinic	Monoclinic	Monoclinic	
space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$	
<i>a</i> (Å)	9.3026(8)	9.4453(5)	9.3676(7)	9.3992(8)	
b (Å)	17.5625 (14)	17.7439(14)	17.6232(14)	17.6714(15)	
c (Å)	11.3369 (9)	11.3019(8)	11.3172(9)	11.2971(9)	
$\alpha, \beta, \gamma/^{\circ}$	90, 94.35(1), 90	90, 94.278(1), 90	90, 94.351(2), 90	90, 94.318(3), 90	
$V/\text{\AA}^3$	1846.9(3)	1888.9(2)	1862.9(3)	1871.1(3)	
Ζ	2	1	1 1		
F(000)	836 932 972		972	944	
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	
μ (mm ⁻¹)	3.2	3.36	3.83	3.58	
Data collection	Bruker APEXII CCD	Bruker APEXII CCD	Bruker APEXII CCD	Bruker APEXII CCD	
Diffractometer	Multi-scan (SADABS;	Multi-scan (SADABS;	Multi-scan (SADABS;	Multi-scan (SADABS;	
Absorption correction	Sheldrick, 2003)	Sheldrick, 2003)	Sheldrick, 2003)	Sheldrick, 2003)	
T_{\min}, T_{\max}	0.682, 0.741	0.356, 0.610	0.659, 0.656	0.368, 0.423	
No. of measured,					
independent and					
observed $[I > 2\sigma(I)]$	3254, 3254, 1686	8950, 3206, 2250	8955, 3162, 2200	8879, 3296, 2207	
reflections					
$R_{\rm int}$	0.060	0.0101	0.072	0.0080	
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.595	0.595	0.595	0.595	
Refinement $R[F^2 > 2\sigma]$	0.072.0.204.1.0	0.070 0.10(0.0)	0.000.0.155.1.01	0.001.0.050.1.05	
(F^2)], $wR(F^2)$, S	0.062, 0.294,1.0	0.072,0.196,0.96	0.060,0.155,1.01	0.091,0.258,1.07	
No. of reflections	3354	3206	3162	3296	
No. of parameters	222	208	221	209	
TT , , , , , ,	H-atom parameters	H-atom parameters	H-atom parameters	H-atom parameters	
H-atom treatment	constrained	constrained	constrained	constrained	
$\Delta ho_{ m max,} \Delta ho_{ m min}$	1.80, -1.00	1.42, -2.36	1.50, -1.58	2.43, -2.74	

Computer programs: CrysAlis PRO, Agilent Technologies, SHELXL97 (Sheldrick, 1997). SHELXL2014 (Sheldrick, 2015),

DIAMOND (Brandenburg & Putz, 2005) and publCIF (Westrip, 2010).

1-Eu, 1-Tb and 1-Gd have been published in our previous work. $^{\rm 1-2}$

Fig.S1 View of the coordination environments of the ligand (a) and Y(III)(b) atoms.

(code: C, gray ; O, red; N, dark blue; Y, blue) The hydrogen atoms are omitted for clarity. (c) The polyhedron of 3D framework viewed from b axis. (d) The simplified topology structure of **1-Y**.

Jul	neeme	Lun	Y:Eu = 9:1
luff	hanna	have made and	Y:Eu = 8:2
hul	man	hamman	Y:Eu = 3:3
un	·		Y:Eu = 6:4
win	man	********	Y:Eu = 5:5
ull	h		Y:Eu = 4:6
u	much		Y:Eu = 3:7
Jul .	a star	h	Y:Eu = 2:8
un	l		Y:Eu = 1:9
lill_	u_u_k	······	<u>1-Eu</u>
10	20	30 20/°	40 5

Fig. S2 PXRD patterns of $Eu_x Y_{1-x}$ (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

Fig.S3 PXRD patterns of Tb_xY_{1-x} (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

Fig.S4 IR spectra (KBr pellet, cm⁻¹) of H₄BPTC, **1-Y** and **Eu_xY_{1-x}** (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

Fig.S5 IR spectra (KBr pellet, cm⁻¹) of H₄BPTC, **1-Y** and **Tb_xY_{1-x}** (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

Fig. S6 XPS spectra (a) and (b) Eu3d of Eu_xY_{1-x} .

Fig. S7 XPS spectra (a) and (b) Tb3d of Tb_xY_{1-x} .

Fig.S8 The luminescence decay lifetimes of Eu_xY_{1-x} at room temperature. Insert: The luminescence decay lifetimes of **1-Eu** and $Eu_{0.1}Y_{0.9}$.

Fig.S9 The luminescence decay lifetimes of Tb_xY_{1-x} at room temperature. Insert: The luminescence decay lifetimes of 1-Tb and $Tb_{0.1}Y_{0.9}$.

Fig. S10 The excitation spectra of $Eu_{0.1}Y_{0.9}$ and $Tb_{0.1}Y_{0.9}$.

Fig.S11 Luminescent spectra of (a) $Eu_{0.1}Y_{0.9}$, 1-Eu and (b) $Tb_{0.1}Y_{0.9}$, 1-Tb (2mg) in DMF (2mL) when excited at 275 nm.

Fig.S12 TG curves of 1-Y, Eu_{0.1}Y_{0.9} and Tb_{0.1}Y_{0.9}.

Fig.S13 UV-vis adsorption spectra of H₄BPTC in the solid state at room temperature.

Fig.S14 (a) Luminescent spectra of $Eu_{0.1}Y_{0.9}$ upon the addition of various Fe^{3+} concentrations in DMF when excited at 275 nm. (b) Nonlinear Stern-Volmer plot for Fe^{3+} by exponential quenching equation. Inset: linear fitting plot of the Stern-Volmer plot with 0-20 ppm of Fe^{3+} .

Fig.S15 (a) Luminescent spectra of $Eu_{0.1}Y_{0.9}$ upon the addition of various Cr^{3+} concentrations in DMF when excited at 275 nm. (b) Nonlinear Stern-Volmer plot for

 Cr^{3+} by exponential quenching equation. Inset: linear fitting plot of the Stern-Volmer plot with 0-20 ppm of Cr^{3+} .

Fig.S16 (a) Luminescent spectra of $Tb_{0.1}Y_{0.9}$ upon the addition of various Fe^{3+} concentrations in DMF when excited at 275 nm. (b) Nonlinear Stern-Volmer plot for Fe^{3+} by exponential quenching equation. Inset: linear fitting plot of the Stern-Volmer plot with 0-30 ppm of Fe^{3+} .

Fig.S17 (a) Luminescent spectra of $Tb_{0.1}Y_{0.9}$ upon the addition of various Cr^{3+} concentration in DMF when excited at 275 nm. (b) Nonlinear Stern-Volmer plot for Cr^{3+} by exponential quenching equation. Inset: linear fitting plot of the Stern-Volmer plot with 0-15 ppm of Cr^{3+} .

Fig.S18 (a) Luminescent spectra of $\mathbf{Tb}_{0.1}\mathbf{Y}_{0.9}$ dissolved in different solvents ($\lambda ex = 275 \text{ nm}$). (b) Bar chart obtained for $\mathbf{Tb}_{0.1}\mathbf{Y}_{0.9}$ upon addition of different solvents. (c) Luminescent spectra of $\mathbf{Tb}_{0.1}\mathbf{Y}_{0.9}$ with the gradual addition of acetone (0-100ppm).

Fig.S19 (a) Nonlinear Stern-Volmer plot for acetone by exponential quenching equation for $Eu_{0.1}Y_{0.9}$. Inset: linear fitting plot of the Stern-Volmer plot with 0-15 ppm of acetone. (b) Nonlinear Stern-Volmer plot for acetone by exponential quenching equation for $Tb_{0.1}Y_{0.9}$. Inset: linear fitting plot of the Stern-Volmer plot with 0-20 ppm of acetone.

Fig.S20 (a) Time-dependent emission spectra after exposure of $Eu_{0.1}Y_{0.9}$ to $Cr^{3+}(\lambda_{ex} = 275 \text{ nm})$. (b) Plots of ln (I₀/I_t) for the luminescent intensity of $Eu_{0.1}Y_{0.9}$ at 615 nm obtained from the spectra.

Fig.S21 (a) Time-dependent emission spectra after exposure of $Tb_{0.1}Y_{0.9}$ to $Fe^{3+}(\lambda_{ex} = 275 \text{ nm})$. (b) Plots of ln (I₀/I_t) for the luminescent intensity of $Tb_{0.1}Y_{0.9}$ at 544 nm obtained from the spectra.

Fig.S22 (a) Time-dependent emission spectra after exposure of $Tb_{0.1}Y_{0.9}$ to $Cr^{3+}(\lambda_{ex} = 275 \text{ nm})$. (b) Plots of ln (I₀/I_t) for the luminescent intensity of $Tb_{0.1}Y_{0.9}$ at 544 nm obtained from the spectra.

Fig.S23 (a) Time-dependent emission spectra after exposure of **1-Eu** to Fe^{3+} ($\lambda_{ex} = 275 \text{ nm}$). (b) Plots of ln (I₀/I_t) for the luminescent intensity of **1-Eu** at 615nm obtained from the spectra.

Fig.S24 (a) Time-dependent emission spectra after exposure of **1-Tb** to Fe^{3+} ($\lambda_{ex} = 275$ nm). (b) Plots of ln (I₀/I_t) for the luminescent intensity of **1-Tb** at 544 nm obtained from the spectra.

Fig.S25 (a) Time-dependent emission spectra after exposure of 1-Eu to Cr^{3+} ($\lambda_{ex} = 275 \text{ nm}$). (b) Plots of ln (I₀/I_t) for the luminescent intensity of 1-Eu at 615nm obtained from the spectra.

Fig.S26 (a) Time-dependent emission spectra after exposure of **1-Tb** to Cr^{3+} ($\lambda_{ex} = 275 \text{ nm}$). (b) Plots of ln (I₀/I_t) for the luminescent intensity of **1-Tb** at 544nm obtained from the spectra.

Fig.S27 The PXRD pattern of (a) $Eu_{0.1}Y_{0.9}$ and (b) $Tb_{0.1}Y_{0.9}$ before and after the detection of Fe³⁺, Cr³⁺and acetone.

Fig.S28 PXRD patterns of (a) $Eu_{0.1}Y_{0.9}$ and (b) $Tb_{0.1}Y_{0.9}$ immersed in different organic solutions for 24 hours.

Fig.S29 The XPS spectra of $Tb_{0.1}Y_{0.9}$ before and after the detection of Fe^{3+} and Cr^{3+} .

Fig.S30 Spectral overlap between the excitation spectrum of $Eu_{0.1}Y_{0.9}$, $Tb_{0.1}Y_{0.9}$ ($\lambda_{ex} = 275$ nm) and the absorption spectra of metal ions investigated in this work.

Fig.S31 Spectral overlap between the excitation spectrum of $Eu_{0.1}Y_{0.9}$, $Tb_{0.1}Y_{0.9}$ ($\lambda_{ex} = 275$ nm) and the absorption spectra of organic solutions investigated in this work.

Fig. S32 (a) The proposed structural model of M^{n+} in 1-Ln. (code: C, gray; O, red; M^{n+} , brown). (b) The adsorption energy results of 1-Ln treated with different metal ions calculated by DFT.

Fig.S33 The calculated adsorption locate for acetone in 1-Ln using the Sorption method.

Table	S2
-------	-----------

СР	Metal ratios from starting material preparation	Metal ratios from ICP of digested sample	X
$Eu_{0.9}Y_{0.1} x = 0.9$	Eu: Y = 9: 1	Eu : Y = 0.91 : 0.09	0.91
$Eu_{0.8}Y_{0.2} x = 0.8$	Eu: Y = 8:2	Eu : Y = 0.82 : 0. 18	0.82
$Eu_{0.6}Y_{0.4}x = 0.6$	Eu: Y = 6:4	Eu : Y = 0.64 : 0.36	0.64
$Eu_{0.5}Y_{0.5}x = 0.5$	Eu: Y = 5:5	Eu : Y = 0.53: 0.57	0.53
$Eu_{0.3}Y_{0.7}x = 0.3$	Eu: Y = 3:7	Eu : Y = 0.29 : 0.71	0.29
$Eu_{0.2}Y_{0.8} x = 0.2$	Eu : Y =2 : 8	Eu : Y = 0.24 : 0.76	0.24
$Eu_{0.1}Y_{0.9} x = 0.1$	Eu:Y=1:9	Eu : Y = 0.08 : 0.92	0.08

СР	CP Metal ratios from starting material		X
	preparation	of digested sample	

$Th_{0.0}V_{0.0}x = 0.8$	$\mathbf{Th} \cdot \mathbf{V} = 8 \cdot 2$	Th: $V = 0.87 \cdot 0.13$	0.87
100.810.2X 0.0			0.07
$Tb_{0.6}Y_{0.4} x = 0.6$	$\mathbf{Tb}: \mathbf{Y} = 6: 4$	Tb: $Y = 0.67 : 0.33$	0.67
$Tb_{0.4}Y_{0.6} x = 0.4$	Tb: Y = 4:6	Tb: Y = 0.33 : 0.64	0.33
$Tb_{0.2}Y_{0.8}x = 0.2$	Tb: Y =2 : 8	Tb: Y = 0.21: 0.79	0.21
$Tb_{0.1}Y_{0.9} x = 0.1$	Tb : Y = 1 : 9	Tb: Y = 0.19 : 0.81	0.19

Table S3 Quantum yield of Eu_xY_{1-x} and Tb_xY_{1-x} .

Sample	Quantum yield (Φ)	Sample	Quantum yield (Φ)	
Eu _{0.9} Y _{0.1}	45.35%	Tb _{0.9} Y _{0.1}	24.81%	
Eu _{0.8} Y _{0.2}	59.57%	Tb _{0.8} Y _{0.2}	18.88%	
Eu _{0.7} Y _{0.3}	65.66%	Tb _{0.7} Y _{0.3}	23.47%	
Eu _{0.6} Y _{0.4}	70.53%	Tb _{0.6} Y _{0.4}	26.51%	
Eu _{0.5} Y _{0.5}	74.47%	Tb _{0.5} Y _{0.5}	22.26%	
Eu _{0.4} Y _{0.6}	73.19%	Tb _{0.4} Y _{0.6}	19.39%	
Eu _{0.3} Y _{0.7}	71.41%	Tb _{0.3} Y _{0.7}	17.99%	
Eu _{0.2} Y _{0.8}	66.73%	Tb _{0.2} Y _{0.8}	15.45%	
Eu _{0.1} Y _{0.9}	69.04%	Tb _{0.1} Y _{0.9}	14.02%	
1-Eu	62.65%	1-Tb	20.32%	

Table S4 Selected bond lengths (Å) for 1-Y.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Y1	O2	2.397(8)	Y1	03	2.397(11)
Y1	O6	2.211(13)	Y1	01	2.457(9)
Y1	05	2.294(9)	Y1	O4	2.561(9)
Y1	O41	2.303(9)			

Table S5 Selected bond angles (°) for 1-Y.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
06	Y1	05	89.2(7)	O6	Y1	01	76.5(5)
O6	Y1	O41	80.1(4)	05	Y1	01	78.8(3)
05	Y1	O4	76.2(3)	O4 ¹	Y1	01	145.8(3)
O6	Y1	O 8 ¹	116.2(7)	O 8 ¹	Y1	01	135.8(3)
05	Y1	O 8 ¹	139.1(3)	03	Y1	01	75.2(4)
O4 ¹	Y1	$O8^1$	77.3(3)	02	Y1	01	53.9(3)
O6	Y1	03	151.6(5)	O6	Y1	O4	150.5(5)
05	Y1	03	87.1(4)	05	Y1	O4	70.0(3)
O41	Y1	03	126.0(4)	O41	Y1	O4	74.8(3)
O81	Y1	03	83.8(4)	09	Y1	O4	85.7(3)
O6	Y1	02	84.0(5)	O 8 ¹	Y1	O4	73.2(3)
05	Y1	02	132.5(3)	03	Y1	O4	51.2(3)
O4 ¹	Y1	02	147.0(3)	02	Y1	O4	125.5(3)

$O8^1$	Y1	O2	84.2(3)	O1	Y1	O4	117.6(3)
03	Y1	O2	77.9(3)	O1	Y1	O4	117.6(3)
O6	Y1	05	89.2(7)	O6	Y1	01	76.5(5)
O6	Y1	O4 ¹	80.1(4)	05	Y1	01	78.8(3)

Reference

1

H. Hao, Y. Wang, S. Yuan, D. Li and J. Sun, *Acta Crystallogr C Struct Chem*, 2018, **74**, 386-391. H. Hao, H. Liu, Y. Wang, S. Yuan, H. Xu, J. Zhang, Y. Wang, D. Li and J. Sun, *Acta Crystallogr C Struct Chem*, 2019, **75**, 221-230. 2