Supporting Information

Bimetallic Au–Pd Alloy Nanoparticles Supported on MIL-101(Cr) as Highly Efficient Catalysts for Selective Hydrogenation of 1,3-Butadiene

Lili Liu,* Xiaojing Zhou, Luxia Guo, Shijuan Yan, Yingjie Li, Shuai Jiang, and Xishi Tai*

Entry	Catalyst	W _{Au} (%)	w _{Pd} (%)	Mole ratio (Au:Pd)
1	Au(3)Pd(1)/MIL-101(Cr)	2.30	0.40	3:1
2	Au(2)Pd(1)/MIL-101(Cr)	2.03	0.58	2:1
3	Au(1)Pd(2)/MIL-101(Cr)	1.25	1.35	1:2
4	Au(1)Pd(3)/MIL-101(Cr)	1.00	1.60	1:3
5	Au/MIL-101(Cr)	2.55	-	-
6	Pd/MIL-101(Cr)	-	2.66	-

 Table S1 Au and Pd loadings of as-synthesized catalysts from ICP-AES analysis.

Fig. S1 TEM micrographs and particle size distribution histograms of Au/MIL-101(Cr) (a, b) and Pd/MIL-101(Cr) (c, d).

ARTICLE

Journal Name

Fig. S2 TEM micrographs and the paricle size distribution histograms of Au(2)Pd(1)/MIL-101(Cr): (a, b) pretreatment in flowing N₂ at 50 °C for 1 h; (c, d) pretreatment in flowing N₂ at 80 °C for 1 h; (e, f) pretreatment in flowing N₂ at 100 °C for 1 h; (g, h) pretreatment in flowing H₂ at 50 °C for 1 h.

Fig. S3 XRD patterns of Au(2)Pd(1)/MIL-101(Cr): (a) pretreatment in flowing N₂ at 50 °C for 1 h; (b) pretreatment in flowing N₂ at 80 °C for 1 h; (c) pretreatment in flowing N₂ at 100 °C for 1 h; (d) pretreatment in flowing H₂ at 50 °C for 1 h.

Fig. S4 Au 4f and Pd 3d XPS of Au(2)Pd(1)/MIL-101(Cr): (a,b) pretreatment in flowing N₂ at 50 °C for 1 h; (c, d) pretreatment in flowing N₂ at 80 °C for 1 h; (e, f) pretreatment in flowing N₂ at 100 °C for 1 h; (g, h) pretreatment in flowing H₂ at 50 °C for 1 h.

Fig. S5 The product selectivities over Au–Pd bimetallic catalysts with different Au:Pd mole ratio: (a) Au(3)Pd(1)/MIL-101(Cr); (b) Au(2)Pd(1)MIL-101(Cr); (c) Au(1)Pd(2)/MIL-101(Cr); (d) Au(1)Pd(3)/MIL-101(Cr) (the catalysts were pretreated in flowing N₂ at 50 °C for 1 h before reaction). (supporting information, page 4)

Fig. S6 The reusability of Pd/MIL-101(Cr): (a) BD conversion; (b–d) Product selectivity.

Fig. S7 XRD patterns of as-prepared (a) and reused Au(2)Pd(1)/MIL-101(Cr) (b).

Fig. S8 TEM micrograph (a) and the Au–Pd paricle size distribution histograms (b) of reused Au(2)Pd(1)/MIL-101(Cr).