Supporting Information

A Naphthalimide-Based Turn-on Fluorescent Probe for Peroxynitrite Detection and Imaging in Living Cells

Xiling Liu,^b Fangyuan Gu,^c Xinyi Zhou,^c Wei Zhou, *a Shuping Zhang,^b Lei Cui,^c Ting Guo *a

^a College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China

^b College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

^c College of Science, Shanghai University, Shanghai 200444, China

Contents

1. Experiment	.1
1.1 Preparation of reactive oxygen species (ROS)	.1
1.2 The limit of detection (LOD) of HCA-OH	.1
2. UV-Vis absorption spectra	.2
3. Time-dependent changes in the fluorescence intensity	.3
4. LC-MS spectroscopy	.4
5. Effects of pH	.5
6. Cytotoxicity assays	.5
7. Crystal data and structure refinement for HCA-OH	.6
8. Optimization result "coordinate data" calculated by Density Functional Theory (TD-DF	T)
	.6
9. NMR and HRMS spectra	.9

1. Experiment

1.1 Preparation of reactive oxygen species (ROS)

Peroxynitrite solution (ONOO⁻) was synthesized as reported literature. Briefly, hydrogen peroxide (0.7 M, 1.5 mL) was acidified with hydrochloric acid (0.6 M, 1.5 mL) under ice-water bath, sodium nitrite (0.6 M, 3 mL) and sodium hydroxide (1.5 M, 3 mL) was added simultaneously in 1-2 s. The solution turned bright yellow. Then a small amount of MnO_2 was added to remove excess hydrogen peroxide. The prepared ONOO⁻ package is stored at -20 °C. The concentration of peroxynitrite was estimated by using an extinction coefficient of 1670 M⁻¹ cm⁻¹ at 302 nm. C_{ONOO} = $(Abs302 \text{ nm} / 1670)^*$ dilution factor.¹ Hydrogen peroxide (H₂O₂), hypochlorite (ClO⁻), sodium nitrite (NaNO₂) and tert-butyl hydroperoxide (t-BuOOH) were delivered from commercial aqueous solutions, respectively. Nitric oxide (NO) was used from a stock solution prepared by sodium nitroprusside. Singlet oxygen $({}^{1}O_{2})$ was generated in situ by addition of the H₂O₂ stock solution into a solution containing 10 equiv. of HClO. Superoxide solution (O_2^{\bullet}) was prepared by adding KO₂ into dry dimethyl sulfoxide (DMSO) and stirring vigorously for 10 min. Hydroxyl radicals (•OH) was generated by Fenton reaction, FeCl₂ was added in the presence of 10 equiv. H₂O₂.

Fig. S1 Absorption spectrum of peroxynitrite

1.2 The limit of detection (LOD) of HCA-OH

The emission spectrum of free HCA-OH in PBS buffer (10 mM, pH 7.4, containing 1% DMSO) was collected for 11 times to confirm the background noise σ . The probe noise can be calculated from fluorescence signals in solution without ONOO⁻ using the root-mean-square (σ), we took 11 data points to obtain the average value before treated with ONOO-. $Vx^2 = \Sigma (vi - v)^2$

Where yi is the average value from calculation and y is the measured data point. The σ noise is calculated as

$$\sigma = \sqrt{Vx^2/N}$$

Where N is the number of data points used for the average value.

$$LOD = 3\sigma/K$$

The linear regression curve was then fitted according to the data in the range of ONOO⁻ from 10 to 80 μ M and obtained the slope of the curve (7.83 μ M). The detection limit was determined to be 49.7 nM, which facilitate the quantitative detection of ONOO⁻ in the complex environment.²

2. UV-Vis absorption spectra

Fig. S2 UV -Vis absorption spectra of **HCA-OH** (black), **HCA-OH** with ONOO⁻ (red line). The final concentration of the probe was 10 μ M and ONOO⁻ concentrations was 50 μ M. Data was acquired in 10 mM PBS buffer (pH 7.4, 1% DMSO) after incubation at 37 °C for 20 min.

3. Time-dependent changes in the fluorescence intensity

Fig. S3 Time-dependent changes in the fluorescence intensity of **HCA-OH** (black line: $0 \mu M$ ONOO⁻, red line: $30 \mu M$ ONOO⁻). The excitation and emission wavelength were 460 nm and 548 nm, respectively.

Fig. S4 (a) HPLC traces of **HCA-OH** (purple line), **HCA-NH**₂ (red line), **HCA-OH** reaction with ONOO⁻ for 10 min (blue line) and 20 min (green line). (b) ESI-MS spectrum of **HCA-OH** after treated with ONOO⁻.

5. Effects of pH

Fig. S5 Fluorescence intensity changes of **HCA-OH** (10 μ M) towards ONOO⁻ (10 μ M) in PBS buffer with 1% DMSO under different pH conditions (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0). The excitation and emission wavelength were 460 nm and 548 nm, respectively.

6. Cytotoxicity assays

Fig. S6 MTT assays of HepG2 cells

7. Crystal data and structure refinement for HCA-OH

Fig. S7 The crystal structure of HCA-OH

Compound	НСА-ОН		
Empirical formula	$C_{22} H_{22} N_2 O_4$		
CCDC	1974831		
Formula weight	378.41		
Crystal system, space group	Monoclinic, P2 ₁ /c		
Unit cell dimensions (Å, °)	$a = 13.7287(13) \text{ Å} \qquad a = 90^{\circ}.$		
	$b=18.656(2)$ Å $b=105.962(6)^{\circ}$.		
	$c = 7.4592(7) \text{ Å } g = 90^{\circ}.$		
Volume/ Å ³	1836.8(3) Å ³		
Z, Calculated density	4, 1.368 Mg/m ³		
Absorption coefficient/mm ⁻¹	0.493		
F (000)	800		
Theta range for data collection/	2.913 to 52.995.		
Goodness-of-fit on F ²	0.960		
Final R indices [I>2 σ]	R1 = 0.0616, $wR2 = 0.1407$		
Large diff. peak and hole/e Å ⁻³	0.235 and -0.236 e.		

Table S1 Crystal data and structure refinement for HCA-OH

8. Optimization result "coordinate data" calculated by Density Functional Theory (TD-DFT)

Table S2 Density Functional Theory (TD-DFT) optimized coordinate data Ground state (S_0) :

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	2.176516	-0.812352	-1.000887	
2	6	0	0.833450	-0.310541	-0.977437	
3	6	0	-0.218009	-1.094082	-1.477238	
4	6	0	0.565784	0.987011	-0.442086	
5	6	0	1.626995	1.776242	0.067336	
6	6	0	2.975005	1.244910	0.030579	
7	6	0	1.351145	3.036721	0.590209	
8	1	0	2.169364	3.647265	0.984053	
9	6	0	0.041924	3.519015	0.616908	
10	6	0	-1.003795	2.756402	0.121421	
11	6	0	-0.760783	1.483823	-0.418224	
12	6	0	-1.814676	0.661707	-0.946212	
13	6	0	-1.552962	-0.571639	-1.447331	
14	1	0	-2.355483	-1.202772	-1.841710	
15	1	0	-0.161036	4.510203	1.035430	
16	1	0	-2.027356	3.141470	0.151531	
17	1	0	-0.025555	-2.067936	-1.877693	
18	7	0	3.233870	0.003774	-0.480661	
19	7	0	-3.173114	1.210120	-0.918445	
20	1	0	-3.478647	1.385296	-1.854729	
21	6	0	-4.103973	0.288774	-0.273282	
22	6	0	-4.809312	-0.644977	-1.029322	
23	6	0	-4.291931	0.348910	1.105404	
24	6	0	-5.699333	-1.517879	-0.408265	
25	1	0	-4.660835	-0.693173	-2.113236	
26	6	0	-5.182495	-0.522337	1.726522	
27	1	0	-3.739155	1.083887	1.698559	
28	6	0	-5.885728	-1.455552	0.969811	
29	1	0	-6.250723	-2.253186	-1.002616	
30	1	0	-5.332961	-0.475089	2.809217	
31	6	0	3.908701	-0.800045	0.560693	
32	6	0	5.348489	-1.056468	0.186858	
33	1	0	3.359934	-1.756367	0.675477	
34	1	0	3.849266	-0.246334	1.519221	
35	6	0	6.065008	-1.881599	1.239953	
36	1	0	5 390941	-1 586992	-0 792098	
37	1	0	5 879499	-0.082546	0 077579	
38	6	0	7 506556	-2 137670	0.867156	
39	1	0	6.020881	-1.350261	2.219347	

40	1	0	5.534885	-2.853835	1.371605	
41	1	0	8.009891	-2.742158	1.650442	
42	1	0	7.572080	-2.688973	-0.094496	
43	1	0	8.059837	-1.181373	0.755689	
44	8	0	3.962946	1.995141	0.508361	
45	8	0	2.448011	-2.008984	-1.491825	
46	8	0	-6.787754	-2.338278	1.609534	
47	1	0	-7.685214	-2.057673	1.438207	

Excited state (S_1) :

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.380305	2.177788	0.051124	
2	6	0	-0.898273	1.006176	-0.578418	
3	6	0	-1.699636	0.050207	-1.262358	
4	6	0	-0.504581	3.047067	0.713123	
5	6	0	0.520405	0.735786	-0.540025	
6	6	0	1.377769	1.634668	0.143960	
7	6	0	0.856677	2.784815	0.770126	
8	6	0	2.816041	1.379106	0.208610	
9	6	0	2.478858	-0.703374	-1.134734	
10	6	0	1.047376	-0.420142	-1.179509	
11	6	0	0.197614	-1.314052	-1.864991	
12	6	0	-1.164762	-1.072044	-1.910573	
13	1	0	-1.827889	-1.751770	-2.439595	
14	1	0	0.638967	-2.181103	-2.341465	
15	1	0	-0.902972	3.941011	1.186892	
16	1	0	1.547554	3.444835	1.281913	
17	1	0	-2.439166	2.414755	0.020736	
18	8	0	3.608846	2.116187	0.807270	
19	8	0	2.986873	-1.705562	-1.656463	
20	7	0	3.281849	0.231710	-0.458859	
21	6	0	4.726694	-0.028403	-0.416844	
22	6	0	5.140416	-0.867606	0.797188	
23	1	0	5.223453	0.942976	-0.388258	
24	1	0	4.982640	-0.550720	-1.340313	
25	6	0	6.651251	-1.125882	0.837622	
26	1	0	4.829709	-0.342901	1.709605	
27	1	0	4.601248	-1.823049	0.765490	
28	6	0	7.083307	-1.965497	2.044310	

29	1	0	6.959065	-1.632466	-0.088343
30	1	0	7.183953	-0.164307	0.852462
31	1	0	8.166816	-2.133963	2.050522
32	1	0	6.817175	-1.469405	2.985941
33	1	0	6.592906	-2.946871	2.038106
34	7	0	-3.133786	0.271323	-1.361131
35	1	0	-3.471516	0.814668	-2.152310
36	6	0	-4.063482	-0.138329	-0.499663
37	6	0	-5.446695	0.174064	-0.735905
38	6	0	-3.719948	-0.899107	0.670798
39	6	0	-6.417633	-0.243375	0.137222
40	1	0	-5.714012	0.746642	-1.618164
41	6	0	-4.696477	-1.308179	1.536393
42	1	0	-2.678958	-1.131483	0.845337
43	6	0	-6.056278	-0.989367	1.285763
44	1	0	-7.461768	-0.005317	-0.047195
45	1	0	-4.457903	-1.880108	2.425841
46	8	0	-6.953455	-1.427873	2.177582
47	1	0	-7.853888	-1.160586	1.926304

9. NMR and HRMS spectra

Fig. S8 The ¹H-NMR spectrum of compound 1

Fig. S9 The ¹H-NMR and ¹³C- NMR spectrum of compound 2

Fig. S10 The ¹H-NMR and ¹³C-NMR spectrum of HCA-OH in DMSO-*d*₆

^{1.} J. S. Hu, C. Shao, X. Wang, X. Di, X. Xue, Z. Su, J. Zhao, H. L. Zhu, H. K. Liu and Y. Qian, Imaging Dynamic Peroxynitrite Fluxes in Epileptic Brains with a Near-Infrared Fluorescent Probe. *Advanced Science*, **2019**, 6(15), 1900341.

^{2.} P. J. Ogren, A. Meetze and W. C. Duer, The Limit of Detection in Generalized Least-Squares Calibrations: An Example Using Alprazolam Liquid Chromatography-Tandem Mass Spectrometry Data. *Journal of Analytical Toxicology*, **2009**, 33(3):129-142.