On single-electron magnesium bonding formation and the effect of methyl substitution

Dan Yu, ${ }^{a}$ Di Wu, ${ }^{\text {a }}$ Jing-Yao Liu, ${ }^{a}$ Si-Yi Li ${ }^{\text {b }}$ and Ying Lia*
${ }^{[1]}$ Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
E-mail: liyingedu@jlu.edu.cn
${ }^{[2]}$ Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan

Figure S1. The optimized geometries of the $\mathrm{MgX}_{2}(\mathrm{X}=\mathrm{F}, \mathrm{H})$ molecules and $\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ radicals at the MP2/aug-cc-pVTZ level.

Fig S2. (a) Potential energy scan for \mathbf{I}, (b) Potential energy scan for \mathbf{I}^{\prime}. SC1 and SC 2 represent the distance between Mg and C atoms and the $\mathrm{X}-\mathrm{Mg}-\mathrm{C}(\mathrm{X}=\mathrm{F}, \mathrm{H})$ angle, respectively. Distances in \AA and angles in degrees.

Fig. $\mathbf{S 3}$ (a) The relationship between interaction energy and the number of methyl substituents, (b) the relationship between electron density (ρ) at the $\mathrm{Mg} \cdots \mathrm{C} 1 \mathrm{BCP}$ and the number of methyl substituents of the $\mathrm{X}_{2} \mathrm{Mg} \cdots \mathrm{Y}\left[\mathrm{X}=\mathrm{F}, \mathrm{H} ; \mathrm{Y}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right] \text { complexes. }}\right.$

Table S1 The symmetry, distance between Mg and C 1 atoms ($d_{\mathrm{Mg}-\mathrm{Cl}}$, in \AA), $\mathrm{X}-\mathrm{Mg}-\mathrm{X}$ angle (α, in degree), $\mathrm{Mg}-\mathrm{X} 1 / \mathrm{X} 2$ bond length ($R_{\mathrm{Mg}-\mathrm{X} 1}$, in \AA), and the $D_{\mathrm{X} 1-\mathrm{Mg}-\mathrm{C} 1-\mathrm{H} 1}$ dihedral angle (in degree) of the $\mathrm{X}_{2} \mathrm{Mg} \cdots \mathrm{Y}\left[\mathrm{X}=\mathrm{F}, \mathrm{H} ; \mathrm{Y}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$] complexes obtained by using different methods with the same aug-cc-pVTZ basis set.

Complex	Method	Symmetry	$d_{\mathrm{Mg}-\mathrm{C} 1}$	α	$R_{\mathrm{Mg}-\mathrm{X1} 1}$	$R_{\mathrm{Mg}-\mathrm{X} 2}$	$D_{\mathrm{X1} 1-\mathrm{Mg}-\mathrm{Cl}-\mathrm{H} 1}$
I	MP2	C_{s}	2.573	163.0	1.778	1.779	0.0
	wB97XD	C_{s}	2.527	164.9	1.767	1.768	0.0
	M06-2X	C_{s}	2.506	165.1	1.752	1.754	0.0
	B3LPY-D3(BJ)	C_{s}	2.514	162.2	1.767	1.768	0.0
	B2PLYPD3	C_{s}	2.525	162.5	1.768	1.769	0.0
II-1							
	MP2	C_{s}	2.509	160.1	1.781	1.781	32.2
	wB97XD	C_{s}	2.475	161.5	1.770	1.770	32.0
	M06-2X	C_{s}	2.443	161.5	1.756	1.756	30.2
	B3LPY-D3(BJ)	C_{s}	2.458	158.6	1.770	1.770	32.2
	B2PLYPD3	C_{s}	2.466	159.3	1.771	1.771	32.1
	MP2	C_{1}	2.521	160.1	1.780	1.783	12.3
	B3LPY-D3(BJ)	C_{l}	2.465	158.3	1.769	1.772	6.0
	B2PLYPD3	C_{l}	2.473	159.0	1.771	1.773	8.8
	MP2	C_{s}	2.707	166.6	1.717	1.717	89.9
	wB97XD	C_{s}	2.590	165.4	1.719	1.719	89.9
	M06-2X	C_{s}	2.608	165.2	1.704	1.704	89.8
	B3LPY-D3(BJ)	C_{s}	2.551	162.8	1.716	1.716	89.9
	B2PLYPD3	C_{s}	2.629	165.1	1.712	1.712	89.9
	MP2	C_{s}	2.644	164.3	1.719	1.719	31.8
	wB97XD	C_{s}	2.583	163.3	1.719	1.719	31.9
	M06-2X	C_{s}	2.579	163.4	1.706	1.706	31.8
	B3LPY-D3(BJ)	C_{s}	2.581	161.7	1.715	1.715	32.1
	B2PLYPD3	C_{s}	2.607	162.9	1.713	1.713	32.0

