Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Conformational dynamics of amyloid- β (16-22) peptide in aqueous ionic liquids

Sathish Dasari and Bhabani S. Mallik*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.

*bhabani@chy.iith.ac.in

Average Y	Coil	Bend	Turn	α -helix	3 ₁₀ -helix	5-helix	β-sheet	β -bridge
180	0.76						0.15	0.02
170	0.77						0.14	0.02
160	0.60						0.33	0.01
150	0.52						0.41	0.01
140	0.46						0.47	
130	0.81						0.04	0.08
120	0.72						0.16	0.06
110	0.74						0.15	0.04
100	0.88	0.05						
90	0.81	0.01					0.05	0.07
80	0.50						0.41	0.02
70	0.93							0.01
60	0.93							
50	0.93		0.01					
40	0.81	0.01	0.11					
30	0.75	0.01	0.18					
20	0.60	0.07	0.24		0.03			
10	0.56	0.04	0.31		0.03			
0	0.50	0.11	0.31		0.01			
-10	0.40	0.11	0.39		0.03			
-20	0.39	0.12	0.36	0.01	0.06			
-30	0.35	0.05	0.24	0.25	0.04			
-40	0.28	0.01	0.06	0.58	0.01			
-50	0.27		0.03	0.64				
-60	0.27		0.01	0.65				
-70	0.30		0.08	0.40		0.15		
-80	0.38	0.05	0.29	0.10		0.10		
-90	0.54	0.20	0.13			0.06		
-100	0.57	0.33	0.03					

Table S1. Secondary structure elements with average Ψ angle for peptide dimer (16-22) in water.

Average W	Coil	Bend	Turn	α -helix	3 ₁₀ -helix	5-helix	β-sheet	β -bridge
180	0.77						0.11	0.06
170	0.72						0.16	0.05
160	0.76						0.16	0.02
150	0.65						0.26	0.03
140	0.30						0.63	
130	0.43						0.50	
120	0.50						0.43	
110	0.27						0.66	
100	0.31						0.62	
90	0.43						0.50	
80	0.51						0.40	0.02
70	0.80						0.08	0.05
60	0.89						0.01	0.03
50	0.90						0.01	0.02
40	0.89	0.01	0.04					
30	0.73	0.02	0.19					
20	0.60	0.07	0.25		0.01			
10	0.45	0.03	0.44		0.04			
0	0.40	0.09	0.33	0.01	0.11			
-10	0.38	0.01	0.16	0.04	0.35			
-20	0.31	0.01	0.20	0.27	0.16			
-30	0.29		0.11	0.52	002			
-40	0.30		0.05	0.58				
-50	0.30		0.05	0.56		0.03		
-60	0.31	0.02	0.15	0.28		0.17		
-70	0.31	0.01	0.05	0.29		0.26		
-80	0.32	0.02	0.19	0.02		0.38		
-90	0.46	0.11	0.28			0.08		
-100	0.63	0.27	0.03					

Table S2. Secondary structure elements with average Ψ angle for peptide dimer (16-22) in 10% (w/w) EAM.

Average Ψ	Coil	Bend	Turn	α -helix	3 ₁₀ -helix	5-helix	β-sheet	β-bridge
180	0.64						0.28	0.01
170	0.48						0.44	0.02
160	0.30						0.63	0.01
150	0.30						0.63	
140	0.30						0.62	
130	0.30						0.62	0.01
120	0.27						0.66	
110	0.38						0.55	
100	0.40						0.53	
90	0.60						0.33	
80	0.67						0.25	0.02
70	0.83						0.06	0.04
60	0.93							
50	0.93							
40	0.93							
30	0.93							
20	0.90		0.03					
10	0.62	0.04	0.26		0.02			
0	0.48	0.02	0.28		0.16			
-10	0.39	0.03	0.29	0.01	0.20			
-20	0.39	0.08	0.19	0.22	0.05			
-30	0.31		0.23	0.30	0.08			
-40	0.28		0.03	0.62				
-50	0.28		0.01	0.64				
-60	0.27			0.66				
-70	0.32		0.13	0.40		0.08		
-80	0.34		0.28	0.30		0.01		
-90	0.41	0.08	0.13	0.27		0.03		
-100	0.49	0.15	0.13			0.16		

Table S3. Secondary structure elements with average Ψ angle for peptide dimer (16-22) in 70% (w/w) EAM.

Average Y	Coil	Bend	Turn	α -helix	3 ₁₀ -helix	5-helix	β-sheet	β -bridge
180	0.75						0.15	0.03
170	0.59						0.33	0.01
160	0.57						0.36	0.01
150	0.56						0.37	
140	0.39						0.54	
130	0.52						0.41	
120	0.63						0.30	
110	0.53						0.40	
100	0.61						0.32	
90	0.70						0.24	
80	0.53						0.37	0.03
70	0.75						0.12	0.07
60	0.89						0.01	0.03
50	0.92							0.01
40	0.93		0.01					
30	0.73	0.10	0.10					
20	0.61	0.04	0.29					
10	0.52	0.08	0.33					
0	0.50	0.14	0.30					
-10	0.42	0.16	0.22	0.02	0.11			
-20	0.45	0.19	0.29					
-30	0.40	0.20	0.20	0.12	0.01			
-40	0.36	0.11	0.13	0.32		0.01		
-50	0.29		0.01	0.63				
-60	0.28		0.01	0.61		0.05		
-70	0.42	0.13	0.19	0.13		0.06		
-80	0.50	0.24	0.11	0.01		0.07		
-90	0.60	0.24	0.09					
-100	0.63	0.29	0.01					

Table S4. Secondary structure elements with average Ψ angle for peptide dimer (16-22) in 10% (w/w) EAN.

Average Ψ	Coil	Bend	Turn	α -helix	3 ₁₀ -helix	5-helix	β-sheet	β -bridge
180	0.54						0.39	0.01
170	0.40						0.53	0.01
160	0.43						0.48	0.02
150	0.39						0.54	
140	0.28						0.65	
130	0.27						0.67	
120	0.28						0.66	
110	0.28						0.66	
100	0.34						0.59	
90	0.45						0.48	
80	0.58						0.33	0.03
70	0.78						0.12	0.03
60	0.93							
50	0.93							
40	0.91	0.03						
30	0.88	0.05	0.01					
20	0.61	0.09	0.22		0.01			
10	0.48	0.08	0.30		0.07			
0	0.48	0.05	0.32		0.09			
-10	0.48	0.02	0.28		0.15			
-20	0.48	0.03	0.41		0.02			
-30	0.48		0.35	0.10				
-40	0.44		0.26	0.23				
-50	0.40		0.21	0.33				
-60	0.40		0.20	0.33				
-70	0.44		0.20	0.29				
-80	0.55	0.09	0.20	0.09				
-90	0.58	0.12	0.23					
-100	0.56	0.16	0.21					

Table S5. Secondary structure elements with average Ψ angle for peptide dimer (16-22) in 70% (w/w) EAN.

Average Ψ	Coil	Bend	Turn	α -helix	3 ₁₀ -helix	5-helix	β –sheet	β -bridge
180	0.86						0.02	0.06
170	0.68						0.24	0.01
160	0.41						0.52	
150	0.37						0.56	0.01
140	0.31						0.62	
130	0.69						0.21	0.03
120	0.81						0.01	0.12
110	0.82	0.06						0.05
100	0.84	0.08	0.01					0.01
90	0.81	0.04	0.03					0.06
80	0.73	0.04	0.08					0.08
70	0.88	0.05						
60	0.82	0.08	0.03					
50	0.80	0.08	0.05					
40	0.80	0.07	0.06					
30	0.67	0.17	0.09					
20	0.60	0.17	0.16					
10	0.59	0.13	0.20		0.01			
0	0.54	0.10	0.27		0.02			
-10	0.47	0.12	0.15	0.01	0.18			
-20	0.44	0.16	0.14	0.08	0.11			
-30	0.42	0.13	0.12	0.23	0.03			
-40	0.47	0.06	0.10	0.30				
-50	0.50	0.08	0.06	0.29				
-60	0.55	0.08	0.14	0.06		0.11		
-70	0.46	0.12	0.06	0.01		0.29		
-80	0.37	0.09	0.24			0.23		
-90	0.60	0.28	0.06					
-100	0.62	0.30	0.01					

Table S6. Secondary structure elements with average Ψ angle for peptide dimer (16-22) in 10% (w/w) TEAM.

Average Ψ	Coil	Bend	Turn	α -helix	3 ₁₀ -helix	5-helix	β-sheet	β -bridge
180	0.50						0.42	0.02
170	0.42						0.51	0.01
160	0.44						0.49	
150	0.30						0.63	
140	0.27						0.66	
130	0.29						0.64	
120	0.27						0.67	
110	0.27						0.66	
100	0.27						0.66	
90	0.32						0.61	
80	0.49						0.42	0.02
70	0.79						0.10	0.04
60	0.93							
50	0.93							
40	0.93							
30	0.91		0.02					
20	0.92		0.02					
10	0.61	0.04	0.21		0.07			
0	0.53		0.21		0.19			
-10	0.48	0.05	0.10		0.31			
-20	0.45	0.07	0.10		0.32			
-30	0.40	0.01	0.24		0.29			
-40	0.40		0.25	0.17	0.11			
-50	0.40		0.21	0.33				
-60	0.41	0.01	0.18	0.33				
-70	0.40		0.20	0.33				
-80	0.42	0.04	0.14	0.33				
-90	0.47	0.13	0.04	0.29				
-100	0.53	0.14	0.24		0.03			

Table S7. Secondary structure elements with average Ψ angle for peptide dimer (16-22) in 70% (w/w) TEAM.

System	RDF	10% (w/	w) IL	70% (w/	w) IL
		α-helix	β–sheet	α-helix	β–sheet
Water	Amide_H – Water_O	0.39	0.85 (Coil)	_	_
	Amide_O-Water_H	1.12	1.57 (Coil)	_	_
EAM	Amide H – Water O	0.03	0.42	0.153	0.16
	Amide_H – Anion_O	0.54	0.13	0.39	0.56
	Amide_O – Cation_H	0.05	0.03	0.16	0.43
	Amide_O – Water_H	1.19	1.13	0.80	0.40
EAN	Amide_H – Water_O	0.21	0.40	0.12	0.15
	Amide H – Anion O	0.52	0.19	0.73	0.54
	Amide_O – Cation_H	0.09	0.04	0.35	0.42
	Amide_O – Water_H	1.11	1.18	0.67	0.48
TEAM	Amide H – Water O	0.34	0.45	0.11	0.27
	Amide_H – Anion_O	0.34	0.12	0.25	0.23
	Amide_O – Cation_H	0.01	0.001	0.08	0.04
	Amide_O – Water_H	1.35	1.16	0.60	0.67

Table S8. Coordination numbers of water oxygen atoms, anion oxygen atoms around each amide hydrogen and water hydrogens, cation hydrogens around each amide oxygen of peptide dimer (16-22) in water, 10% and 70% (w/w) EAM, EAN and TEAM IL.

Figure S1. Temperature of the system along the equilibrium simulation of 50 ns with running average for 10 and 70% (w/w) EAM, EAN and TEAM ILs.

Figure S2. Total energy of the system along the equilibrium simulation of 50 ns with running average for 10 and 70% (w/w) EAM, EAN and TEAM ILs.

Figure S3. Mean squared displacement of water, cation and anion along the equilibration of 50 ns in 10 and 70% (w/w) EAM, EAN and TEAM ILs.

Figure S4. COM-COM radial distribution functions of anion around cation in 10 and 70% (w/w) EAM, EAN and TEAM IL.

Figure S5. Average Ψ angle along with the simulation time for peptide dimer in water.

Figure S6. Average Ψ angle along with the simulation time for peptide dimer in 10% and 70% (w/w) EAM IL.

Figure S7. Average Ψ angle along with the simulation time for peptide dimer in 10% and 70% (w/w) EAN IL.

Figure S8. Average Ψ angle along with the simulation time for peptide dimer in 10% and 70% (w/w) TEAM IL.

Figure S9. Convergence of the free energy profile with simulation time for peptide dimer in water.

Figure S10. Convergence of the free energy profile with simulation time for peptide dimer in 10 and 70% (w/w) EAM (a, b), EAN (c, d) and TEAM (e, f) ILs.

Figure S11. The solvent-accessible surface area of the peptide dimer with changing average Ψ angle in water, 10% and 70% (w/w) EAM, EAN and TEAM IL.

Figure S12. vdWs, Coulomb and total interaction energies between peptide and solvent with average Ψ angle in 10% and 70% (w/w) EAM, EAN and TEAM IL.

Optimized coordinates of Ethylammonium (EA), Triethylammonium (TEA), Mesylate and Nitrate ions.

Ethylammonium

Atc	om x	У	Z
C1	0.425	0.199	0.189
H1	0.430	0.136	0.278
H2	0.514	0.262	0.189
H3	0.430	0.136	0.100
C2	0.302	0.287	0.189
H4	0.296	0.350	0.101
H5	0.296	0.350	0.278
N1	0.173	0.202	0.189
H6	0.115	0.220	0.272
H7	0.115	0.221	0.107
H8	0.195	0.102	0.189

Triethylan	Triethylammonium									
Atom x	У	Z								
C2 0.243 H4 0.170	0.190 0.118	0.202 0.241	Mes	ylate						
H5 0.191 H6 0 320	0.253	0.130	Ator	m x	У	Z				
C1 0.298	0.152	0.319	C1 ().135	0.221	0.220				
H3 0.220	0.202	0.393	H1 C H2 C	0.100	0.297	0.130				
NI 0.407 H1 0.434	0.369	0.283	H3 (S1 0).100).317	0.122	0.189				
C5 0.359 H12 0.448	0.481 0.539	0.193 0.167	O2 (O3 ().354).354	0.357 0.190	0.264 0.081				
H13 0.322 C6 0.255	0.435 0.570	0.102 0.258	O1 ().354	0.115	0.317				
H14 0.234 H15 0.160	0.654 0.519	0.192 0.276	Nitra	ate						
C3 0.532	0.812	0.353 0.228 0.278	Ator	n x	у	Z				
H8 0.514 C4 0.657	0.283 0.384	0.122 0.252	O1 (0.100	0.132	0.318				
H9 0.743 H10 0.656	0.328 0.480	0.215 0.200	N1 (O3 (O2 ().100).100	0.195	0.209				
H11 0.674	0.402	0.358	02 (5.100	0.132	0.100				

Force-field parameters of the ionic liquid ions are given in the form of .itp files. **ea.itp**

[moleculetype] ; Name nrexcl 3 eam [atoms] type resnr residue atom cgnr ; nr charge mass typeB chargeB CT EAM C1 1 -0.238064 12.000000 1 1 2 HC 2 1 EAM H1 0.10212 1.000000 3 HC EAM H2 3 1 0.10212 1.000000 4 HC H3 4 EAM 0.10212 1.000000 1 5 CT EAM C2 5 0.094624 12.000000 1 6 H1 1 EAM H4 6 0.083008 1.000000 7 H1EAM H5 7 0.083008 1.000000 1 8 Ν 1 EAM N1 8 -0.379448 14.000000 9 Η 9 EAM H6 0.283504 1.000000 1 10 Η 1 EAM H7 10 0.283504 1.000000 11 Η 1 EAM H8 11 0.283504 1.000000

[bonds]

aj funct r k ; ai 9 8 1 1.0330e-01 3.0878e+05 1 1.0330e-01 3.0878e+05 8 10 8 11 1 1.0330e-01 3.0878e+05 5 1 1.0910e-01 2.8342e+05 6 5 7 1 1.0910e-01 2.8342e+05 1 2 1 1.0920e-01 2.8225e+05 1 3 1 1.0920e-01 2.8225e+05 1 4 1 1.0920e-01 2.8225e+05 5 8 1 1.4990e-01 2.4568e+05 5 1 1 1.5350e-01 2.5363e+05

[pairs]

- 3 3 2 2 2 1 1 1 1

- 7 8 6 7 8 9 10 11
- 1 1 1 1 1 1 1 1

[angles]

;	ai	aj	ak f	unct theta cth
	10	8	11	1 1.0811e+02 3.3907e+02
	9	8	10	1 1.0811e+02 3.3907e+02
	9	8	11	1 1.0811e+02 3.3907e+02
	7	5	8	1 1.0791e+02 4.1020e+02
	6	5	7	1 1.1074e+02 3.2669e+02
	6	5	8	1 1.0791e+02 4.1020e+02
	5	8	9	1 1.1011e+02 3.8652e+02
	5	8	10	1 1.1011e+02 3.8652e+02
	5	8	11	1 1.1011e+02 3.8652e+02
	4	1	5	1 1.1005e+02 3.8802e+02
	3	1	4	1 1.0835e+02 3.2995e+02
	3	1	5	1 1.1005e+02 3.8802e+02
	2	1	3	1 1.0835e+02 3.2995e+02
	2	1	4	1 1.0835e+02 3.2995e+02
	2	1	5	1 1.1005e+02 3.8802e+02
	1	5	6	1 1.1174e+02 3.8510e+02
	1	5	7	1 1.1174e+02 3.8510e+02
	1	5	8	1 1.1432e+02 5.3932e+02

[dihedrals]

;i j	k l	f	unc	C0	C5						
7	5	8	9	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
7	5	8	10	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
7	5	8	11	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
6	5	8	9	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
6	5	8	10	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
6	5	8	11	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
4	- 1	5	6	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
4	- 1	5	7	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
4	- 1	5	8	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
3	1	5	6	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
3	1	5	7	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
3	1	5	8	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
2	1	5	6	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
2	1	5	7	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;

2	1	5	8	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
1	5	8	9	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
1	5	8	10	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
1	5	8	11	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;

nitrate.itp

[moleculetype] ; Name nrexcl nitrate 3 [atoms] type resnr residue atom cgnr charge mass typeB chargeB ; nr 1 O2 1 NIT 01 1 -0.539408 16.000000 2 Ν NIT N1 2 0.818224 14.000000 1 3 O2 1 NIT O2 3 -0.539408 16.000000 4 O2 1 NIT O3 4 -0.539408 16.000000 [bonds] aj funct r k ; ai 2 1 1.2190e-01 6.3697e+05 3 2 4 1 1.2190e-01 6.3697e+05 1 2 1 1.2190e-01 6.3697e+05 [pairs] ; ai aj funct [angles] ; ai aj ak funct theta cth 4 1 1.2513e+02 6.4559e+02 2 3 1 2 3 1 1.2513e+02 6.4559e+02 1 2 4 1 1.2513e+02 6.4559e+02 tea.itp [moleculetype] ; Name nrexcl 3 tea [atoms] ; nr type resnr residue atom cgnr charge mass typeB chargeB 1 TEA C2 1 -0.190376 12.000000 1 CT

2	HC	1	TEA	H4	2 0.09144 1.000000
3	HC	1	TEA	H5	3 0.09144 1.000000
4	HC	1	TEA	H6	4 0.09144 1.000000
5	CT	1	TEA	C1	5 -0.066968 12.000000
6	H1	1	TEA	H2	6 0.111376 1.000000
7	H1	1	TEA	H3	7 0.111376 1.000000
8	Ν	1	TEA	N1	8 -0.17632 14.000000
9	Η	1	TEA	H1	9 0.257136 1.000000
10	CT	1	TEA	C5	10 -0.066968 12.000000
11	H1	1	TEA	H12	11 0.111376 1.000000
12	H1	1	TEA	H13	12 0.111376 1.000000
13	CT	1	TEA	C6	13 -0.190376 12.000000
14	HC	1	TEA	H14	14 0.09144 1.000000
15	HC	1	TEA	H15	15 0.09144 1.000000
16	HC	1	TEA	H16	16 0.09144 1.000000
17	CT	1	TEA	C3	17 -0.066968 12.000000
18	H1	1	TEA	H7	18 0.111376 1.000000
19	H1	1	TEA	H8	19 0.111376 1.000000
20	CT	1	TEA	C4	20 -0.190376 12.000000
21	HC	1	TEA	H9	21 0.09144 1.000000
22	HC	1	TEA	H10	22 0.09144 1.000000
23	HC	1	TEA	H11	23 0.09144 1.000000

[bonds]							
; ai	aj fu	unct r k					
20	21	1 1.0920e-01 2.8225e+05					
20	22	1 1.0920e-01 2.8225e+05					
20	23	1 1.0920e-01 2.8225e+05					
17	18	1 1.0910e-01 2.8342e+05					
17	19	1 1.0910e-01 2.8342e+05					
13	14	1 1.0920e-01 2.8225e+05					
13	15	1 1.0920e-01 2.8225e+05					
13	16	1 1.0920e-01 2.8225e+05					
10	11	1 1.0910e-01 2.8342e+05					
10	12	1 1.0910e-01 2.8342e+05					
8	9	1 1.0330e-01 3.0878e+05					
5	6	1 1.0910e-01 2.8342e+05					
5	7	1 1.0910e-01 2.8342e+05					
1	2	1 1.0920e-01 2.8225e+05					
1	3	1 1.0920e-01 2.8225e+05					
1	4	1 1.0920e-01 2.8225e+05					
17	20	1 1.5350e-01 2.5363e+05					
10	13	1 1.5350e-01 2.5363e+05					
8	10	1 1.4990e-01 2.4568e+05					
8	17	1 1.4990e-01 2.4568e+05					
5	8	1 1.4990e-01 2.4568e+05					

1 5 1 1.5350e-01 2.5363e+05

[pairs	1	
; ai	aj fun	ct
19	21	1
19	22	1
19	23	1
18	21	1
18	22	1
18	23	1
12	17	1
12	14	1
12	15	1
12	16	1
11	17	1
11	14	1
11	15	1
11	16	1
10	18	1
10	19	1
9	11	1
9	12	1
9	13	1
9	18	1
9	19	1
9	20	1
8	14	1
8	15	1
8	16	1
8	21	1
8	22	1
8	23	1
7	9	1
7	10	1
7	17	1
6	9	1
6	10	1
6	17	1
5	11	1
5	12	1
5	18	1
5	19	1
4	6	1
4	7	1
4	8	1
3	6	1

3	7	1
3	8	1
2	6	1
2	7	1
2	8	1
1	9	1
13	17	1
10	20	1
5	13	1
5	20	1
1	10	1
1	17	1

[ang]	les]		
; ai	aj	ak fi	unct theta cth
22	20	23	1 1.0835e+02 3.2995e+02
21	20	22	1 1.0835e+02 3.2995e+02
21	20	23	1 1.0835e+02 3.2995e+02
19	17	20	1 1.1174e+02 3.8510e+02
18	17	19	1 1.1074e+02 3.2669e+02
18	17	20	1 1.1174e+02 3.8510e+02
17	20	21	1 1.1005e+02 3.8802e+02
17	20	22	1 1.1005e+02 3.8802e+02
17	20	23	1 1.1005e+02 3.8802e+02
15	13	16	1 1.0835e+02 3.2995e+02
14	13	15	1 1.0835e+02 3.2995e+02
14	13	16	1 1.0835e+02 3.2995e+02
12	10	13	1 1.1174e+02 3.8510e+02
11	10	12	1 1.1074e+02 3.2669e+02
11	10	13	1 1.1174e+02 3.8510e+02
10	13	14	1 1.1005e+02 3.8802e+02
10	13	15	1 1.1005e+02 3.8802e+02
10	13	16	1 1.1005e+02 3.8802e+02
9	8	10	1 1.1011e+02 3.8652e+02
9	8	17	1 1.1011e+02 3.8652e+02
8	10	11	1 1.0791e+02 4.1020e+02
8	10	12	1 1.0791e+02 4.1020e+02
8	17	18	1 1.0791e+02 4.1020e+02
8	17	19	1 1.0791e+02 4.1020e+02
7	5	8	1 1.0791e+02 4.1020e+02
6	5	7	1 1.1074e+02 3.2669e+02
6	5	8	1 1.0791e+02 4.1020e+02
5	8	9	1 1.1011e+02 3.8652e+02
4	1	5	1 1.1005e+02 3.8802e+02
3	1	4	1 1.0835e+02 3.2995e+02
3	1	5	1 1.1005e+02 3.8802e+02

2	1	3	1 1.0835e+02 3.2995e+02
2	1	4	1 1.0835e+02 3.2995e+02
2	1	5	1 1.1005e+02 3.8802e+02
1	5	6	1 1.1174e+02 3.8510e+02
1	5	7	1 1.1174e+02 3.8510e+02
10	8	17	1 1.1064e+02 5.2585e+02
8	10	13	1 1.1432e+02 5.3932e+02
8	17	20	1 1.1432e+02 5.3932e+02
5	8	10	1 1.1064e+02 5.2585e+02
5	8	17	1 1.1064e+02 5.2585e+02
1	5	8	1 1.1432e+02 5.3932e+02

[dihe	[dihedrals]										
;i j 1	c 1	fu	nc	C0 .	C5						
19	17	20) 21	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
19	17	20) 22	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
19	17	20) 23	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
18	17	20) 21	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
18	17	20) 22	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
18	17	20) 23	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
12	10	8	17	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
12	10	13	8 14	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
12	10	13	8 15	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
12	10	13	8 16	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
11	10	8	17	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
11	10	13	14	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
11	10	13	15	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
11	10	13	16	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
10	8	17	18	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
10	8	17	19	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
9	8	10	11	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
9	8	10	12	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
9	8	10	13	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
9	8	17	18	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
9	8	17	19	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
9	8	17	20	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
8	10	13	14	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
8	10	13	15	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
8	10	13	16	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
8	17	20	21	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
8	17	20	22	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
8	17	20	23	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
7	5	8	9	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
7	5	8	10	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
7	5	8	17	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
6	5	8	9	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;

6	5	8	10	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
6	5	8	17	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
5	8	10	11	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
5	8	10	12	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
5	8	17	18	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
5	8	17	19	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
4	1	5	6	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
4	1	5	7	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
4	1	5	8	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
3	1	5	6	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
3	1	5	7	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
3	1	5	8	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
2	1	5	6	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
2	1	5	7	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
2	1	5	8	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
1	5	8	9	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
13	10	8	17	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
10	8	17	20	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
5	8	10	13	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
5	8	17	20	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
1	5	8	10	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;
1	5	8	17	3	0.65270	1.95811	0.00000	-2.61082	0.00000	0.00000	;

mesylate.itp

[moleculetype] ; Name nro mesylate nrexcl 3

[atoms]

;	nr	type	resn	r residue	atom	cg	gnr	charge	e mass	typeB	chargeB
	1	CT	1	MES	C1	1	-0	.314216	12.000000		
	2	H1	1	MES	H1	2	0.	.071328	1.000000		
	3	H1	1	MES	H2	3	0.	.071328	1.000000		
	4	H1	1	MES	H3	4	0.	.071328	1.000000		
	5	S	1	MES	S 1	5	0.9	856563	2.100000		
	6	O2	1	MES	O2	6	-0	.561808	16.000000		
	7	O2	1	MES	O3	7	-0	.561808	16.000000		
	8	O2	1	MES	01	8	-0	.561808	16.000000)	

[bonds]									
; ai	aj f	unc	trk						
1	2	1	1.0930e-01	2.8108e+05					
1	3	1	1.0930e-01	2.8108e+05					
1	4	1	1.0930e-01	2.8108e+05					
5	6	1	1.4360e-01	4.5279e+05					

5	7	1	1.4360e-01	4.5279e+05
5	8	1	1.4360e-01	4.5279e+05
1	5	1	1.7740e-01	2.1255e+05

[pai	rs]	
;	ai	aj	funct

4	6	1
4	7	1
4	8	1
3	6	1
3	7	1
3	8	1
2	6	1
2	7	1

8 1 2

[angles]							
;	ai	aj	ak	func	t theta	cth	
	4	1	5	1	1.0811e	+02	3.6702e+02
	3	1	4	1	1.0955e	e+02	3.2786e+02
	3	1	5	1	1.0811e	+02	3.6702e+02
	2	1	3	1	1.0955e	e+02	3.2786e+02
	2	1	4	1	1.0955e	e+02	3.2786e+02
	2	1	5	1	1.0811e	+02	3.6702e+02
	7	5	8	1	1.1973e	e+02	6.2409e+02
	6	5	7	1	1.1973e	e+02	6.2409e+02
	6	5	8	1	1.1973e	e+02	6.2409e+02
	1	5	6	1	1.0832e	e+02	5.5723e+02
	1	5	7	1	1.0832e	e+02	5.5723e+02
	1	5	8	1	1.0832¢	+02	5.5723e+02

[dihedrals]

;i j	k l	f	unc	C0	C5						
4	1	5	6	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;
4	1	5	7	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;
4	1	5	8	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;
3	1	5	6	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;
3	1	5	7	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;
3	1	5	8	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;
2	1	5	6	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;
2	1	5	7	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;
2	1	5	8	3	0.60250	1.80749	0.00000	-2.40998	0.00000	0.00000	;