Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Temperature effects on the C–H symmetric stretching vibrational frequencies of guest hydrocarbon molecules in 5¹², 5¹²6² and 5¹²6⁴ cages of sI and sII clathrate hydrates

Go Fuseya and Akihiro Hachikubo* Kitami Institute of Technology, 165, Koen-cho, Kitami 090-8507, Japan

Satoshi Takeya

National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba 305-8565, Japan

Fig. S1. X-ray diffraction patterns of the hydrate samples at 93 K: (a) sI C_2H_4 hydrate and (b) sII Kr + C_2H_4 hydrate. The curves in each pattern represent the observed intensities. The line marks below each pattern show the calculated peak positions for sI hydrate, sII hydrate and hexagonal ice.

Fig. S2. Effect of temperature on unit-cell parameters of five types of sI and sII hydrates.^{1,2}

Fig. S3. Raman spectra of the C–H stretching region of (a) sI $CH_4 + C_2H_6$ hydrates (y C_2H_6 : 67.8%) and (b) sII $CH_4 + C_2H_6$ hydrates (y C_2H_6 : 21.1%) at a temperature range of 93–183 K. (c) Raman spectra of the C–C stretching region of encapsulated C_2H_6 in sI and sII $CH_4 + C_2H_6$ hydrates at 93 K.

Fig. S4. Effect of temperature on Raman shifts of C–H symmetric stretch of encapsulated CH_4 and C_2H_6 in sI and sII $CH_4 + C_2H_6$ hydrates which have different guest composition.

I able S1 Kacompositionsample positi	man shifts and their v ons.	ot C-H syn /ariations wit	th temperature cha	. H4 and C ₂ H ₆ in sI and nges. The errors are the	d sll CH ₄ + C ₂ H ₆ hydra ne standard deviations (of nine measuren	nifferent guest nents at different
guest molecule	cage	structure	bulk guest composition of C ₂ H ₆ [%]	estimated cage occupancy ratio of CH ₄ in large cages ³	estimated cage occupancy ratio of C ₂ H ₆ in large cages ³	Raman shift at 93 K [cm ⁻¹]	slope of Raman shift between 93 K and 183 K (<i>Av</i> / <i>AT</i>) [10 ⁻² cm ⁻¹ /K]
CH4	5 ¹²	sI	79.7	0.04	0.94	2912.7 ± 0.1	$+0.9 \pm 0.1$
	$5^{12}6^{2}$	sI	7.97	0.04	0.94	2901.6 ± 0.1	$+2.0 \pm 0.3$
	5 ¹²	sI	67.8	0.12	0.86	2913.1 ± 0.1	$+0.9 \pm 0.1$
	$5^{12}6^{2}$	sI	67.8	0.12	0.86	2902.0 ± 0.1	$+1.9 \pm 0.1$
	5 ¹²	sII	35.3	0.14	0.83	2913.5 ± 0.1	$+1.3 \pm 0.2$
	$5^{12}6^{4}$	sII	35.3	0.14	0.83	2902.2 ± 0.1	$+1.2 \pm 0.1$
	5 ¹²	sII	21.1	0.40	0.56	2913.7 ± 0.1	$+1.2 \pm 0.1$
	$5^{12}6^4$	sII	21.1	0.40	0.56	2902.3 ± 0.1	$+1.3 \pm 0.1$
C_2H_6	$5^{12}6^{2}$	sI	7.97	0.04	0.94	2941.9 ± 0.1	$+3.2 \pm 0.1$
	$5^{12}6^{2}$	sI	67.8	0.12	0.86	2942.4 ± 0.1	$+3.0 \pm 0.1$
	$5^{12}6^{4}$	sII	35.3	0.14	0.83	2940.1 ± 0.1	$+1.6 \pm 0.1$

 $+1.7 \pm 0.1$

 2940.1 ± 0.1

0.56

0.40

21.1

sII

 $5^{12}6^{4}$

which have different meet . --I U U U חטיק LO J 404 . TU-U 4:42 Table C1 D.

References

- [1] K. C. Hester, Z. Huo, A. L. Ballard, C. A. Koh, K. T. Miller and E. D. Sloan, *J. Phys. Chem. B*, 2007, **111**, 8830–8835.
- [2] C. J. Rawn, A. J. Rondinone, B. C. Chakoumakos, S. L. Marshall, L. A. Stern, S. Circone, S. Kirby, C. Y. Jones, B. H. Toby, and Y. Ishii, Neutron Powder Diffraction Studies as a Function of Temperature of sII Hydrate Formed from a Methane + Ethane Gas Mixture. Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan, 2002.
- [3] M. Kida, H. Sakagami, N. Takahashi, A. Hachikubo, H. Shoji, Y. Kamata, T. Ebinuma, H. Narita and S. Takeya, *J. Jpn. Petrol. Inst.*, 2007, **50**, 132–138.