Copper(II)-Catalyzed Tandem Cyclization for the Synthesis of Benzo[*d*][1,3]thiazin-2-yl Phosphonates Involving C–P and C–S Bond Formation

Yang, Liu, Shijie Yao, Chaoli Wang, Yahui Zhang and Wenyan Hao^*

Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi, 330022, P.R. China Email :wenyanhao@jxnu.edu.cn

Support Information

CONTENTS:

1. General Information	2
2. Synthesis and Characterization for Compounds 3a-3u	3-11
3. X-Ray Crystal Structure for Compound 3t	12
4. Copies of ¹ H NMR, ¹³ C NMR Spectra for compounds 3a-3u	13-44

1. General Information

All reagents and metal catalysts were obtained from commercial sources without further purification, and commercially available solvents were purified before use. All reactions were performed in reaction tubes. All new compounds were fully characterized. Silica gel plate GF254 were used for thin layer chromatography (TLC) and silica gel H or 300-400 mesh were used for flash column chromatography. Thin layer chromatography plates were visualized by exposure to ultraviolet light. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. The mass analyzer type used for the HRMS measurements is micro TOF. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated.

2. Synthesis and Characterization for Compounds 3a-3t:

A mixture of *o*-alkynylphenyl isothiocyanate **1** (0.20 mmol), and $CuCl_2$ (0.04 mmol) was added into a tube. Subsequently DBU (3.0 equiv.) and DCM (2.0 ml) were added. Then, phosphites **2** (0.6 mmol) was added into the tube. Then, the sealed tube was heated at 45 °C for 18 hours. After completion of reaction as indicated by TLC, the mixture was concentrated and directly purified by flash column chromatography (EtOAc/petroleum ether, 1:2) to give the desired product **3**.

diethyl (Z)-(4-benzylidene-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3a)

Yellow oil; (56.1 mg, 75%); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 5.0, 4.0 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.47 – 7.37 (m, 6H), 7.30 (t, J = 7.2 Hz, 1H), 7.01 (d, J = 2.0 Hz, 1H), 4.34 – 4.23 (m, 4H), 1.37 (t, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 141.3, 135.2, 130.7, 130.2, 129.8, 129.2, 128.4, 127.8, 127.0, 124.4, 123.7, 122.5, 64.3, 64.2, 16.3, 16.3. ³¹P NMR (162 MHz, CDCl₃) δ 2.78. HRMS calcd for C₁₉H₂₁NO₃PS⁺ (M + H⁺): 374.0974; Found: 374.0978.

diethyl (Z)-(4-(4-fluorobenzylidene)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3b)

Yellow oil; (47.1 mg, 60%); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (t, *J* = 3.8 Hz, 1H), 7.52 (t, *J* = 5.4 Hz, 1H), 7.45 – 7.40 (m, 4H), 7.09 (t, *J* = 8.6 Hz, 2H), 6.96 (s, 1H), 4.31 – 4.25 (m, 4H), 1.38 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0(d, ¹*J*_{CF} = 248 Hz), 156.0(d, ¹*J*_{CF} = 238

Hz), 141.4(d, ${}^{2}J_{CF} = 25$ Hz), 131.4, 131.0(d, ${}^{3}J_{CF} = 8$ Hz), 130.8, 130.2, 129.9, 125.7, 124.3, 123.7, 122.3, 115.4 (d, ${}^{2}J_{CF} = 22$ Hz), 64.3, 64.3, 16.3, 16.3, ³¹P NMR (162 MHz, CDCl₃) δ 2.64.HRMS calcd for C₁₉H₂₀FNO₃PS⁺ (M + H⁺): 392.0880; Found: 392.0870.

diethyl (Z)-(4-(4-chlorobenzylidene)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3c)

Yellow oil; (47.3 mg, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 5.8, 3.2 Hz, 1H), 7.53 (dd, J = 6.2, 3.0 Hz, 1H), 7.44 (dd, J = 6.2, 2.6 Hz, 2H), 7.37 (s, 4H), 6.94 (d, J = 2.0 Hz, 1H), 4.31 – 4.26 (m, 4H), 1.38 (t, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 141.2, 133.7, 133.4, 130.8, 130.4, 130.3, 130.0, 128.6, 125.4, 124.6, 124.3, 122.1, 64.4, 64.3, 16.3, 16.3. ³¹P NMR (162 MHz, CDCl₃) δ 2.64. HRMS calcd for C₁₉H₂₀ClNO₃PS⁺(M + H⁺): 408.0585; Found: 408.0575.

diethyl (Z)-(4-(4-bromobenzylidene)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3d)

Yellow oil; (55.1 mg, 61%);¹H NMR (400 MHz, CDCl₃) δ 7.57 (t, *J* = 4.0Hz, 1H), 7.52 (t, *J* = 4.0Hz, 1H), 7.45 – 7.40 (m, 4H), 7.09 (t, *J* = 8.6 Hz, 2H), 6.96 (s, 1H), 4.31 – 4.26 (m, 4H), 1.37 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 141.2, 134.1, 131.5, 130.9, 130.7, 130.3, 130.1, 125.4, 124.7, 124.3, 122.1, 121.6, 64.4, 64.3, 16.3, 16.3.³¹P NMR (162 MHz, CDCl₃) δ 2.57. HRMS calcd for C₁₉H₂₀BrNO₃PS⁺ (M + H⁺): 452.0079; Found: 452.0061.

diethyl (Z)-(4-(4-methylbenzylidene)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3e)

Yellow oil; (62.0 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 7.57(t, *J* = 3.4 Hz, 1H), 7.50 (t, *J* = 5.4Hz, 1H), 7.42 (dd, *J* = 5.8, 3.6 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 6.97 (s, 1H), 4.30 – 4.25 (m, 4H), 2.38 (s, 3H), 1.38 (t, *J* = 7.0 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ 141.6, 141.3, 137.8, 132.5, 130.7, 130.1, 129.7, 129.2, 129.1, 127.5, 127.0, 124.4, 122.7, 64.3, 64.2, 21.4, 16.3, 16.3. ³¹P NMR (162 MHz, CDCl₃) δ 2.80. HRMS calcd for C₂₀H₂₃NO₃PS⁺ (M + H⁺): 388.1131; Found: 388.1169.

diethyl (Z)-(4-(4-methoxybenzylidene)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3f)

Yellow oil; (66.2 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 5.8, 3.4 Hz, 1H), 7.49 (dd, J = 5.8, 3.6 Hz, 1H), 7.41 (dd, J = 9.0, 4.2 Hz, 4H), 6.93 (t, J = 6.4Hz, 3H), 4.31 – 4.25 (m, 4H), 3.84 (s, 3H), 1.37 (t, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 141.5, 141.2, 130.7, 130.0, 129.5, 128.9, 128.1, 126.9, 124.4, 123.0, 121.3, 113.8, 64.3, 64.2, 55.3, 16.3, 16.3. ³¹P NMR (162 MHz, CDCl₃) δ 2.80. HRMS calcd for C₂₀H₂₃NO₄PS⁺ (M + H⁺): 404.1080; Found: 404.1100.

diethyl (Z)-(4-(cyclopropylmethylene)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3g)

Yellow oil; (35.2 mg, 52%); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 5.8 Hz, 1H), 7.31 (s, 3H), 5.42 (d, *J* = 9.4 Hz, 1H), 4.36 -4.28 (m, 4H), 1.42 (t, *J* = 6.8 Hz, 6H), 0.93 (d, *J* = 7.6 Hz, 2H), 0.55 (d, *J* = 4.4 Hz, 2H).¹³C NMR (100 MHz, CDCl₃) δ 141.4, 141.1, 131.6, 130.4, 130.1, 129.0, 123.4, 122.3, 120.6, 64.2, 64.1, 16.4, 16.3, 11.6, 7.8.³¹P NMR (162 MHz, CDCl₃) δ 2.83. HRMS calcd for C₁₆H₂₁NO₃PS⁺ (M + H⁺): 338.0974; Found: 338.0978.

diethyl (Z)-(4-benzylidene-6-fluoro-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3h)

Yellow oil; (44.7 mg, 57%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 8.6, 5.8 Hz, 1H), 7.38 – 7.46 (m, 4H), 7.34 – 7.27 (m, 2H), 7.13 (td, J = 8.4, 2.6 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 4.31 – 4.25 (m, 4H), 1.37 (t, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6(d, ¹ J_{CF} = 250 Hz), 155.3(d, ¹ J_{CF} = 238 Hz), 137.9(d, ¹ J_{CF} = 260 Hz), 134.9, 132.4(d, ³ J_{CF} = 9 Hz), 129.2, 128.5, 128.1, 127.5, 124.4(d, ³ J_{CF} = 8 Hz), 123.0, 116.9(d, ² J_{CF} = 22 Hz), 110.8(d, ² J_{CF} = 24 Hz), 64.3, 64.3, 16.3, 16.3.³¹P NMR (162 MHz, CDCl₃) δ 2.71. HRMS calcd for C₁₉H₂₀FNO₃PS⁺ (M + H⁺): 392.0880; Found: 392.0906.

diethyl (Z)-(4-benzylidene-6-chloro-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3i)

Yellow oil; (52.2 mg, 64%); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 2.0 Hz, 1H), 7.46 – 7.40 (m, 6H), 7.32 (d, J = 7.0 Hz, 1H), 6.99 (s, 1H), 4.30 – 4.25 (m, 4H), 1.37 (t, J = 7.0 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ 140.1, 139.9, 136.1, 134.8, 131.4, 129.8, 129.3, 128.5, 128.1, 128.0, 124.3, 124.0, 122.5, 64.4, 64.3, 16.3, 16.3.³¹P NMR (162 MHz, CDCl₃) δ 2.51. HRMS calcd for C₁₉H₂₀ClNO₃PS⁺ (M + H⁺): 408.0585; Found: 408.0605.

diethyl (Z)-(4-benzylidene-6-bromo-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3j)

Yellow oil; (53.3 mg, 59%); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 2.0 Hz, 1H), 7.54 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.45 – 7.36 (m, 5H), 7.31 (t, *J* = 6.8 Hz, 1H), 6.98 (d, *J* = 1.8 Hz, 1H), 4.30 – 4.25 (m, 4H), 1.37 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 140.3, 138.8, 134.8, 132.8, 131.5, 129.3, 128.4, 128.1, 127.3, 124.3, 124.2, 122.2, 64.4, 64.4, 16.3, 16.2. HRMS calcd for C₁₉H₂₀BrNO₃PS⁺ (M + H⁺): 452.0079; Found: 452.0110.

diethyl (Z)-(4-benzylidene-6-(trifluoromethyl)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3k) Yellow oil; (38.0 mg, 43%); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.68 (d, *J* = 8.2 Hz, 1H), 7.61 (d, *J* = 8.2 Hz, 1H), 7.42 (t, *J* = 6.2 Hz, 4H), 7.34 (t, *J* = 6.8 Hz, 1H), 7.04 (s, 1H), 4.32 – 4.26 (m, 4H), 1.38 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 159.0, 143.8, 134.6, 132.4, 132.1, 130.4, 129.3, 129.1, 128.5, 128.3, 126.5 (q, *J*_{CF3} = 4 Hz), 125.0, 123.4, 122.2 (q, *J*_{CF3} = 4 Hz), 122.0 (q, *J*_{CF3} = 4 Hz), 64.5, 16.3. ³¹P NMR (162 MHz, CDCl₃) δ 2.07. HRMS calcd for C₂₀H₂₀F₃NO₃PS⁺ (M + H⁺): 442.0848; Found: 442.0850.

diethyl (Z)-(4-benzylidene-6-methyl-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3l)

Yellow oil; (50.5 mg, 65%); ¹H NMR (400 MHz, CDCl₃) δ 7.46– 7.37 (m, 6H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.25 (d, *J* = 8.8 Hz, 1H), 7.01 (d, *J* = 2.0 Hz, 1H), 4.29 – 4.24 (m, 4H), 2.43 (s, 3H), 1.37 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 139.4, 139.2, 135.3, 130.7, 130.1, 129.1, 128.3, 127.7, 126.3, 124.6, 123.9, 122.0, 64.2, 64.1, 21.5, 16.3, 16.2.³¹P NMR (162 MHz, CDCl₃) δ 3.04. HRMS calcd for C₂₀H₂₃NO₃PS⁺ (M + H⁺): 388.1131; Found: 388.1116.

diethyl (Z)-(4-benzylidene-7-fluoro-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3m)

Yellow oil; (43.9 mg, 56%); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 8.2, 6.0 Hz, 1H), 7.39 (t, J = 6.0 Hz, 4H), 7.31 (dd, J = 13.0, 7.0 Hz, 2H), 7.21 (d, J = 9.0 Hz, 1H), 7.15 (t, J = 9.0 Hz, 1H), 6.94 (s, 1H), 4.31 – 4.25(m, 4H). 1.38 (t, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.3(d, ¹ J_{CF} = 248 Hz), 158.6(d, ¹ J_{CF} = 235 Hz), 135.0, 129.1, 128.4, 127.9, 127.5, 127.0, 126.2(d, ³ J_{CF} = 8 Hz), 122.8, 118.9, 117.8(d, ² J_{CF} = 22 Hz), 116.2(d, ² J_{CF} = 24 Hz), 64.5, 64.4, 16.3, 16.2.³¹P NMR (162 MHz, CDCl₃) δ 2.34. HRMS calcd for C₁₉H₂₀FNO₃PS⁺ (M + H⁺): 392.0880; Found: 392.0888.

diethyl (Z)-(4-benzylidene-7-bromo-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3n)

Yellow solid; (52.4 mg, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.53 (d, *J* = 9.8 Hz, 1H), 7.45 – 7.38(m, 5H), 7.31 (t, *J* = 6.6 Hz, 1H), 6.98 (s, 1H), 4.30 – 4.25 (m, 4H), 1.37 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 142.3, 134.9, 133.4, 132.6, 129.2, 128.4, 128.0, 127.5, 125.8, 123.3, 122.7, 121.6, 64.5, 64.4, 16.3, 16.3.³¹P NMR (162 MHz, CDCl₃) δ 2.20. HRMS calcd for C₁₉H₂₀BrNO₃PS⁺ (M + H⁺): 452.0079; Found: 452.0068.

diethyl (Z)-(4-benzylidene-7-methyl-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(30)

Yellow oil; (49.7 mg, 64%); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.0 Hz, 1H), 7.44 – 7.37(m, 4H), 7.34 (s, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 2.0 Hz, 1H), 4.30 – 4.25 (m, 4H), 2.40 (s, 3H), 1.37 (t, J = 7.0 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ 141.3, 141.1, 140.2, 135.4, 131.6, 130.6, 129.1, 128.4, 127.6, 125.6, 124.1, 123.9, 119.6, 64.3, 64.2, 20.9, 16.3, 16.3.³¹P NMR (162 MHz, CDCl₃) δ 2.83. HRMS calcd for C₂₀H₂₃NO₃PS⁺ (M + H⁺): 388.1131; Found: 388.1129.

diethyl (Z)-(6-fluoro-4-(4-fluorobenzylidene)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3p) Yellow oil; (43.5 mg, 53%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 8.6, 5.8 Hz, 1H), 7.43 (dd, *J* = 8.6, 5.4 Hz, 2H), 7.30 – 7.26 (m, 1H), 7.15 (dd, *J* = 8.0, 2.6 Hz, 1H), 7.10 (t, *J* = 8.6 Hz, 2H), 6.95 (d, *J* = 1.4 Hz, 1H), 4.31 – 4.26 (m, 4H), 1.38 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6(d, ¹*J*_{CF} = 250 Hz), 162.1(d, ¹*J*_{CF} = 248 Hz), 156.2, 153.8, 137.8(d, ²*J*_{CF} = 26 Hz), 132.4(d, ³*J*_{CF} = 9 Hz), 131.0(d, ³*J*_{CF} = 8 Hz), 126.3, 124.2(d, ³*J*_{CF} = 8 Hz), 122.9, 117.0(d, ²*J*_{CF} = 23 Hz), 115.5(d, ²*J*_{CF} = 22 Hz), 110.7(d, ²*J*_{CF} = 24 Hz), 64.4, 64.3, 16.3, 16.2. ³¹P NMR (162 MHz, CDCl₃) δ 2.59. HRMS calcd for C₁₉H₁₉F₂NO₃PS⁺ (M + H⁺): 410.0786; Found: 410.0794.

diethyl (Z)-(6-chloro-4-(4-chlorobenzylidene)-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3q) Yellow oil; (51.3 mg, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 2.0 Hz, 1H), 7.37 (d, *J* = 8.6 Hz, 1H), 7.33 (d, *J* = 2.0 Hz, 1H), 7.29 (s, 4H), 6.85 (d, *J* = 2.0 Hz, 1H), 4.23 – 4.18 (m, 4H), 1.30 (t, *J* = 7.0 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ 140.0, 139.8, 136.3, 133.8, 133.3, 131.5, 130.5, 130.0, 128.7, 126.4, 124.2, 123.5, 123.3, 64.4, 64.4, 16.3, 16.3. ³¹P NMR (162 MHz, CDCl₃) δ 2.34. HRMS calcd for C₁₉H₁₉Cl₂NO₃PS⁺(M + H⁺): 442.0195; Found: 442.0201.

dimethyl (Z)-(4-benzylidene-4H-benzo[d][1,3]thiazin-2-yl)phosphonate(3r)

Yellow oil; (49.1 mg, 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (t, J = 5.4 Hz, 1H), 7.52 (m, J = 4.2 Hz, 1H), 7.46 – 7.39 (m, 6H), 7.31 (t, J = 6.8 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 3.91 (d, J = 11.2 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ 141.5, 141.2, 135.1, 130.9, 130.2, 129.9, 129.2, 128.4, 127.9, 127.1, 124.4, 123.4, 122.5, 54.5, 54.4.³¹P NMR (162 MHz, CDCl₃) δ 5.00. HRMS calcd for C₁₇H₁₇NO₃PS⁺ (M + H⁺): 346.0661; Found: 346.0650.

(Z)-(4-benzylidene-4H-benzo[d][1,3]thiazin-2-yl)diphenylphosphine oxide(3s)

Yellow solid; (52.6 mg, 60%); ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 4H), 7.60 – 7.51 (m, 3H), 7.48 – 7.42 (m, 6H), 7.40 – 7.34 (m, 5H), 7.28 – 7.24 (m, 1H), 6.99 (d, *J* = 1.0 Hz,

1H).¹³C NMR (100 MHz, CDCl₃) δ 141.6, 141.4, 135.2, 132.5, 132.3, 132.2, 131.0, 130.7, 130.0, 129.9, 129.8, 129.2, 128.5, 128.5, 128.4, 127.8, 126.8, 124.4, 124.1, 122.0.³¹P NMR (162 MHz, CDCl₃) δ 20.62. HRMS calcd for C₂₇H₂₁NOPS⁺ (M + H⁺): 438.1076; Found: 438.1064.

(Z)-(4-benzylidene-6-bromo-4H-benzo[d][1,3]thiazin-2-yl)diphenylphosphine oxide(3t) Yellow solid; (53.7 mg, 52%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 12.0, 7.4 Hz, 4H), 7.71 (d, J = 2.0 Hz, 1H), 7.56 (t, J = 7.4 Hz, 2H), 7.51-7.42(m, 7H), 7.37 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 7.2 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 6.97 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 134.8, 132.7, 132.6, 132.2, 132.1, 131.3, 130.7, 129.7, 129.3, 128.6, 128.5, 128.5, 128.1, 128.0, 127.2, 124.1, 123.8.³¹P NMR (162 MHz, CDCl₃) δ 20.99.HRMS calcd for C₂₇H₂₀BrNOPS+(M + H⁺): 516.0181; Found: 516.0183

diethyl (Z)-(4-benzylidene-4H-pyrido[2,3-d][1,3]thiazin-2-yl)phosphonate(3u)

Yellow oil; (31.4 mg, 42%); ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 4.0 Hz, 1H), 7.94 (d, *J* = 7.4 Hz, 1H), 7.44 – 7.38 (m, 5H), 7.34 (d, *J* = 6.2 Hz, 1H), 6.96 (d, *J* = 1.6 Hz, 1H), 4.36 – 4.31 (m, 4H), 1.38 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 134.6, 133.8, 129.2, 129.2, 128.6, 128.4, 125.4, 123.1, 119.0, 64.9, 64.9, 16.3, 16.3. ³¹P NMR (162 MHz, CDCl₃) δ 1.15. HRMS calcd for C₁₈H₂₀N₂O₃PS⁺ (M + H⁺): 375.0927; Found: 375.0935.

3. X-Ray Crystal Structure for Compound 3t

Figure 1 Single-crystal X-ray diffraction structure of **3t**, the thermal ellipsoids are at the 30% probability level and the CCDC number is 2014442

4. Copies of ¹H NMR, ¹³C NMR ³¹P NMR Spectra for compounds 3a-3u

¹H NMR of **3a**

 13 C NMR of **3**a

³¹P NMR of **3a**

¹H NMR of **3b**

¹³C NMR of **3b**

³¹P NMR of **3b**

¹H NMR of **3**c

¹³C NMR of **3**c

³¹P NMR of 3c

 1 H NMR of **3d**

¹³C NMR of **3d**

³¹P NMR of **3d**

¹H NMR of **3e**

³¹P NMR of **3e**

 1 H NMR of **3f**

 ^{13}C NMR of 3f

³¹P NMR of 3f

¹H NMR of 3g

21

¹³C NMR of **3g**

³¹P NMR of **3**g

¹H NMR of **3h**

¹³C NMR of **3h**

31 P NMR of **3h**

¹H NMR of **3i**

³¹P NMR of **3i**

¹H NMR of 3j

¹³C NMR of **3**j

³¹P NMR of **3**j

¹H NMR of 3k

¹³C NMR of **3**k

³¹P NMR of **3**k

 1 H NMR of **3**I

¹³C NMR of **3**l

³¹P NMR of **3**l

¹H NMR of 3m

 13 C NMR of **3m**

³¹P NMR of **3m**

¹H NMR of 3n

 13 C NMR of **3n**

³¹P NMR of **3n**

1 H NMR of **30**

¹³C NMR of **30**

³¹P NMR of **30**

¹H NMR of **3p**

¹³C NMR of **3**p

³¹P NMR of **3p**

¹H NMR of **3q**

¹³C NMR of **3**q

³¹P NMR of 3q

¹H NMR of 3r

¹³C NMR of **3r**

³¹P NMR of **3r**

¹H NMR of **3s**

¹³C NMR of **3s**

³¹P NMR of **3s**

¹H NMR of 3t

¹³C NMR of **3t**

31 P NMR of **3t**

¹H NMR of 3u

13 C NMR of **3**u

³¹P NMR of 3u

