Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

An Electrochemical Sensor Based on Copper-Based Metal-Organic Frameworks- reduced Graphene Oxide composites for Determination of 2,4 – Dichlorophenol in Water

(Supplementary)

Manh B. Nguyen¹⁺, Vu Thi Hong Nhung¹⁺, Vu Thi Thu^{2*}, Dau Thi Ngoc Nga², Thuan Nguyen Pham Truong³, Hoang Truong Giang², Giang H. Le¹, Pham Thi Hai Yen¹, Pham Hong Phong¹, Tuan A. Vu¹ and Vu Thi Thu Ha^{1,2*}

¹Institute of Chemistry (IoC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.

²University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
³CY Cergy Paris University, LPPI, 5 mail Gay Lussac, F-95000, Cergy, France.

*These authors provided equal contribution to this work.*Corresponding author: Vu Thi Thu Ha, Vu Thi Thu

Email: Havt@ich.vast.vn; thuvu.edu86@gmail.com.

Fig. 1S: Structures of studied 2,4- dichlorophenol

Figure 2S: XPS spectra recorded for pure GO

Figure 3S: FTIR spectrum of GO and Cu-BTC/GO

Figure 4S: EDX spectrum and EDX mapping image of GO (a) and of Cu-BTC/GO (b) samples

Figure 5S: TGA and DTA diagrams of Cu-BTC/GO sample

Figure 6S: DPVs of 12µM of 2,4-DCP using different electrodes: bare GCE, GO/GCE, ErGO/GCE, Cu-BTC/GO/GCE and Cu-BTC/ErGO/GCE recorded in PBS, pH = 7 after baseline substraction

Figure 7S: CVs of bare GCE, Cu-BTC/GO/GCE and Cu-BTC/ErGO/GCE from - 0.5V - 0.9V in K₃Fe(CN)₆ 5mM/ PBS 0.1M, pH 7

Randle – Sevick equation:

$$I_n = (2.69 \times 10^5) n^{3/2} A C D^{1/2} v^{1/2}$$

A is the active surface area (ECSA)(cm^2) D is the diffusion coefficient of $[K_3Fe(CN)_6]$ (6.605 × 10⁻⁶ cm^2s^{-1})

n = 1 is the number of transferred electrons for $[Fe(CN)_6]^{3-/4-}$ redox couple C is the bulk concentration of $[K_3Fe(CN)_6]$ (5 mM)

Figure 8S: CVs of Cu-BTC/ErGO/GCE in 5mM $K_3Fe(CN)_6/K_4Fe(CN)_6 + 0.1M$ KCl at different scan rates and calculation of electroactive surface area (ECSA)

Figure 9S: Influence of content of Cu-BTC/ErGO/GCE used for modification on electrochemical signals of 2,4-DCP

Figure 10S: Influence of accumulation time (60- 480 s) on DPV signals recorded in PBS solution (pH 7.0) containing of 2,4-DCP at concentration of 3 μ M on Cu-BTC/ErGO/GCE and bare GCE

Figure 11S: Influence of accumulation time (60- 480 s) on DPV signals recorded in PBS solution (pH 7.0) containing of 2,4-DCP at concentration of 3 μ M, 6 μ M, 12 μ M on Cu-BTC/ErGO/GCE

Figure 12S: Reproducibility of eight Cu-BTC/ErGO/GCE sensors at 12 μ M 2,4-DCP in PBS pH 7

Figure 13S: Repeatability of 5 measurements using one Cu-BTC/ErGO/GCE sensor with 12 μ M 2,4-DCP in PBS pH 7

Figure 14S: DPASV response of Cu-BTC/ErGO/GCE for the detection of 2,4-DCP 12 μ M after 2 weeks.

Figure 15S: Voltammograms of 2,4-DCP on Cu-BTC/ErGO/GCE before and after adding interferents at concentrations 5 time higher than that of analyte, 2,4-DCP with Hg²⁺, Pb²⁺, Mn²⁺ and As³⁺ (a) with 4-nitrophenol (b) and bisphenol A, hydroquinone, dopamine (c)

Figure 16S: Voltammograms of lake water spiked 2,4-DCP at different concentrations recorded on Cu-BTC/ErGO/GCE sensor