Designing a pH-responsive drug delivery system based on smart polymer coating of graphene nanosheet: A theoretical study

Abutaleb Alinejad¹, Heidar Raissi² and Hassan Hashemzadeh^{3*}

1 Department of Chemistry, Payame Noor University, Tehran, Iran, Email: abutalebalinejad@gmail.com

³Department of chemistry, University of Birjand, Birjand, Iran

Tel: +985632502064, Email: hraeisi@birjand.ac.ir

²Department of Chemistry, University of Birjand, Birjand, Iran

Tel: +985632502064, Email: hashemzade_h@birjand.ac.ir

* Corresponding E-mail: <u>hashemzade_h@birjand.ac.ir</u>

Figure S1. The initial sturuce of A) graphene, B) DOX, and C) PEI molecules.

Figure S2. Close snapshots from the orientation of DOX molecule of graphene in A) G-DOX and B) G-pDOX systems. The DOX molecule is drawn in form of ball and stick type, while the graphene is drawn in tube form.

Figure S3. A) The RDF plot between drug molecule and graphene, B) atomic RDF between N atom of DOX and graphene and C) The density profile of drug molecule around of graphene surface.

Figure S4. The number of hydrogen bond between A) PEI and DOX and B) PEI and water in G-DOX@PEI and G-pDOX@pPEI systems.

Table S1. Details of the MD simulation systems.

Table S2. The non-bonded parameters set for graphene employed for all reported simulations.

Figure S1 . The structure of A) graphene, B) DOX, and C) PEI molecules.

Figure S2. Close snapshots from the orientation of DOX molecule of graphene in A) G-DOX and B) G-pDOX systems. The DOX molecule is drawn in form of ball and stick type, while the graphene is drawn in tube form.

Figure S3. A) The RDF plot between drug molecule and graphene, B) atomic RDF between N atom of DOX and graphene and C) The density profile of drug molecule around of graphene surface in G-DOX and G-pDOX systems.

Figure S4. A) The number of hydrogen bonds between A) PEI and DOX and B) PEI and water in G-DOX@PEI and G-pDOX@pPEI systems.

MD simulation box	No. of carrier (No. of atoms)	No. DOX (No. of atoms)	No. PEI chain (No. of atoms)	No. of water molecules	No. of total atoms	Box Size (nm ³)
G-DOX	1 (750 atoms)	10 (670 atoms)	-	16344	50452	8×8×8
G-pDOX	1 (750 atoms)	10 (680 atoms)	-	16351	50483	8×8×8
G-DOX@PEI	1 (750 atoms)	10 (670 atoms)	10 (520 atoms)	16170	50450	8×8×8
G-pDOX@pPEI	1 (750 atoms)	10 (680 atoms)	10 (590 atoms)	16139	50437	8×8×8

Table S1. Details of the MD simulation systems.

Table The

\$2							
non-		Atom	Sigma (A°)	Epsilon (kj/mol)			
	Graphene	С	0.35500	0.29288			
		Н	0.24200	0.12552			

bonded parameters set for graphene employed for all reported simulations.