## SUPLEMMENTARY MATERIAL

## Synthesis of FeO@SiO<sub>2</sub>-DNA core-shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions

David Patiño-Ruiz<sup>a</sup>, Lars Rehmann<sup>b</sup>, Mehrab Mehrvar<sup>c</sup>, Edgar Quiñones-Bolaños<sup>a,d</sup>, and

## Adriana Herrera<sup>a,e\*</sup>

<sup>a</sup>Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia

<sup>b</sup>Department of Chemical and Biochemical Engineering, University of Western Ontario,

London, N6A 3K7, Canada

<sup>c</sup>Department of Chemical Engineering, Ryerson University, Toronto, M5B 2K3, Canada

<sup>d</sup>Civil Engineering Program, Environmental Modelling Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia

<sup>e</sup>Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia

\*Email: aherrerab2@unicartagena.edu.co



Figure S1. Particle size distribution of (a) FeO/ca-NPs  $(10.2 \pm 3.7 \text{ nm})$ , (b) FeO@SiO<sub>2</sub>

 $(125 \pm 27 \text{ nm})$ , and (c) SiO<sub>2</sub> shell thickness  $(38 \pm 6 \text{ nm})$ .



Figure S2. Experimental data fitting based on the Pseudo-first order model for the

adsorption of (a) Pb(II), (b) As(III), and (c) Hg(II).



Figure S3. Experimental data fitting based on the Pseudo-second order model for the

adsorption of (a) Pb(II), (b) As(III), and (c) Hg(II).



Figure S4. Experimental data fitting based on the Elovich model for the adsorption of (a)

Pb(II), (b) As(III), and (c) Hg(II).