Electronic supplementary information (ESI)

Amino group dependent sensing property of metal-organic frameworks: Selective turn-on fluorescent detection of lysine and arginine

Jing Dong,a,b Xiu-Du Zhang,a Xia-Fei Xie,a Fan Guoa and Wei-Yin Sun*a

^a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China

b Nanjing Tech University, Nanjing 211816, China

* Corresponding author.

Email address: sunwy@nju.edu.cn (W. Y. Sun).

towards Lysine				
Table S1. Comparison of the sensing per	rformance of son	ne reported flu	orescent t	urn-on sensors

Probes	Solvent	Linear	K (M-1)	LOD	Reference
		range (mM)		(µM)	
UiO-66-NH2	H2O	0-3.475	1.81×103	60.22	This work
GQD/AuNPs	H2O/PBS	0.047-0.8	/	16.14	S 1
Pyrylium salt	CH3CN/H2O	/	/	36.1	S2
8-hydroxypyrene-					
1,3,6-trisulfonic	H2O	0-0.045	/	3.106	S3
acid trisodium salt					
GO-Al-AR	H2O	0.171-1.71	3.861×103	13.68	S4
Pyridinium–Urea-	CH ₃ CN/H ₂ O/H	/	1.06×102	25	\$5
Coupled Polyether	EPES	/	1.00×103	23	33
CuNCs	H2O/HAc-NaAc	0.01-1.0	1.098×103	5.5	S 6
Chiral carbon dots	H ₂ O/DHP-CA	0-1.0	93.866	3.44	S7
Cd–TCOOH	H ₂ O/HEPES	0-0.14	/	4	S8

Table S2. Comparison of the sensing performance of some reported fluorescent turn-on sensors towards Arginine

Probes	Solvent	Linear range	K (M-1)	LOD	Reference
		(mM)		(µM)	
UiO-66-NH2	H2O	0-0.645	8.03×103	21.50	This work
8-hydroxypyrene-					
1,3,6-trisulfonic	H2O	0-0.045	/	1.941	S 3
acid trisodium salt					
hydroxyphenylben					
zothiazole (HBT)-	DMSO	/	/	2 24	59
based fluorescent	DIVISO	/	Τ	2.27	57
probe (HBT-Py)					
GSH-Ag NCs	AA/H2O	0.01–0.18	/	0.5	S10
1,3,6,8-Tetrakis(p-					
benzoic	H ₂ O	0_0.2	6.8 ×105	23	S11
acid)pyrene	1120	0-0.2	0.0 ~105	2.3	511
(TBAPy)					
polydiacetylene					
vesicles (PDAs)-	H2O	0-0.15	9.1×104	4.27	S12
Mg ₂₊					
(UO ₂)(nip)(2,2'-	H ₂ O	0-0.22	3 46×103	1.06	S13
bpy)	1120	0 0.22	5.10 105	1.00	~ 10
dual-emission	H ₂ O	0 027-0 107	9 91×103	916	S14
carbon dots (CDs)		0.027 0.107	<i>y</i> , <i>y</i> , <i>i</i> , i, 0, <i>i</i> , <i>i</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Au/CQDs	H2O/PBS	0.001-0.005	6.864×106	0.45	S15
composite			0.001 100	0.10	~ 10

	δ(ppm)
UiO-66-NH ₂	8.05 (s), 7.86 (s), 7.79 (d), 7.36 (d), 7.08 (dd), 2.86 (s), 2.71 (s), 2.10
	(s), 1.88 (s)
Lys	8.60 (d), 8.19 (s), 3.80 (t), 2.70 (t), 1.77 (q), 1.52-1.58 (m), 1.39-1.47
	(m), 1.28-1.37 (m)
UiO-66-NH ₂ + Lys	8.05 (s), 7.79 (d), 7.55 (br), 7.36 (d), 7.10 (dd), 3.80 (s), 2.74-2.80 (m),
	2.10 (s), 1.71-1.84 (m), 1.52-1.58 (m), 1.38-1.46 (m), 1.29-1.37 (m)
Arg	3.76 (t), 3.03 (s), 1.72 (d), 1.33-1.57 (m)
UiO-66-NH ₂ + Arg	8.06 (s), 7.79 (d), 7.35 (d), 7.09 (dd), 6.70 (br), 3.83 (t), 3.10 (q), 2.10
	(s), 1.74-1.87 (m), 1.47-1.66 (m)

Table S3. Chemical shifts of Lys and Arg in DCl/DMSO- d_6 , UiO-66-NH₂ digested in HF/DMSO- d_6 before and after the immersion in the solution of Lys and Arg.

Fig. S1 PXRD patterns of UiO-66-NH₂.

Fig. S2. The fluorescence excitation and emission spectra of UiO-66-NH₂ in the solid state (a) and the aqueous suspension (b).

Fig. S3. The maxima wavelength shift of the suspension of UiO-66-NH₂ upon the addition of AAs, positive value refers blue-shift (nm) and negative value presents red-shift (nm).

Fig. S4. UV-Vis spectra of the suspension of UiO-66-NH2 with different AAs.

Fig. S5. The fluorescence emission curves of the aqueous suspension of UiO-66-NH₂ in the absence and presence of different amines.

Fig. S6. Maximum fluorescence intensities of the aqueous suspension of UiO-66-NH₂ by the sequential addition of sodium salt different anions and Lys (a)/Arg (b).

Fig. S7. Fluorescence enhancement and repeatability tests for Lys (a) and Arg (b).

Fig. S8. The longitudinal size of Lys and Arg based on the calculation on Gaussian 09 with b3lyp/6-31g basis sets. The reported internal pore of UiO-66-NH₂ is accessible for guest molecules through triangular windows with size of about 6 Å.

Fig. S9. The emission intensity increments at the maximum wavelength upon the addition of the solution of Lys/Arg (0.5 mL, 0.1 mM) into the suspension of UiO-66-NH₂ (2 mL) under different pH.

References

- S1 C. Chaicham, T. Tuntulani, V. Promarak, B. Tomapatanaget, Sens. Actuators B: Chem., 2019, 282, 936-944.
- S2 X. Qian, W. Gong, F. Wang, Y. Lin, G. Ning, *Tetrahedron Lett.*, 2015, 56, 2764-2767.
- S3 R. S. Bhosale, G. V. Shitre, R. Kumar, D. O. Biradar, S. V. Bhosale, R. Narayan, S. V. Bhosale, Sens. Actuators B: Chem., 2017, 241, 1270-1275.
- S4 R. Cheng, H. Huang, Y. Peng, C. Ge, S. Ou, Y. Bu, Y. Xue, H. Liu, L. Dai, *Microchim. Acta*, 2017, **184**, 3521-3528.
- K. Ghosh, D. Tarafdar, I. D. Petsalakis, G. Theodorakopoulos, *Eur. J. Org. Chem.*, 2017, 2017, 355-362.
- S6 M. Zhang, J. Qiao, S. Zhang, L. Qi, *Talanta*, 2018, **182**, 595-599.
- S7 P. Gao, Z. Xie, M. Zheng, Sens. Actuators B: Chem., 2020, 319, 128265.
- S8 Y. Liu, M Huangfu, P. Wu, M. Jiang, X. Zhao, L. Liang, L. Xie, J. Bai, J. Wang, *Dalton Trans.*, 2019, 48, 13834-13840.
- S9 S. W. Zhang, D. D. Wu, X. Jiang, F. Xie, X. D. Jia, X. L. Song, Y. Yuan, Sens. Actuator B: Chem., 2019, 290, 691-697.
- S10 N. Li, Y. He, Y. Ge, G. Song, J. Fluoresc., 2017, 27, 293-302.
- S11 J. S. Hao, M. Wang, S. T. Wang, Y. Huang, D. P. Cao, *Dyes Pigment.*, 2020, 175, 108131.
- S12 Z. J. Zhang, T. W. Wei, Y. H. Chen, T. T. Chen, B. Chi, F. Wang, X. Q. Chen, Sens. Actuator B: Chem., 2018, 255, 2211-2217.
- S13 L. Wang, B. Tu, W. Xu, Y. Fu, Y. Zheng, Inorg. Chem., 2020, 59, 5004-5017.
- S14 Y. Y. Wang, H. X. Liu, H. H. Song, M. M. Yu, L. H. Wei, Z. X. Li, New J. Chem., 2019, 43, 13234-13239.
- S15 T. Liu, N. Li, J. X. Dong, Y. Zhang, Y. Z. Fan, S. M. Lin, H. Q. Luo, N. B. Li, *Biosens. Bioelectron.*, 2017, 87, 772–778.