Supplementary Information

Photo-induced self-catalysis of nano-Bi₂MoO₆ for solar energy harvesting and charge storage

Jiangju Si,^{a,b} Changmeng Guo, ^a Haojie Liu, ^a Weiwei Li,^{a,b} Xiaowei, Guo,^{a,b} Peidong

Bai,^a Yanghong, Liu,^a Gairong Chen,^{a,b*} and Ninngbo Sun^{a,b*}

Synthesis of nano Bi₂MoO₆

Powder samples of Bi_2MoO_6 were prepared by simple hydrothermal reaction. The precursors, $Na_2MoO_4 \cdot 2H_2O$ (2 mmol) and $Bi(NO_3)_3 \cdot 5H_2O$ (2 mmol), were added into 20 ml of 2.0 M nitric acid with stirring , and the pH value of the solution was then adjusted to 2.0 by the addition of an ammonia solution. After being stirred for 2 h at room temperature, the mixed solution was transferred into a 50 ml Teflon-lined autoclave and kept at 453 K for 24 h. After cooling the solution to room temperature, the precipitates were separated by centrifuging, rinsed three times alternately with deionized water and ethanol, and then dried at 333 K for 24 h in a vacuum.

The preparation of the working electrodes

The active material, nano Bi_2MoO_6 powder, was mixed with conductive carbon black (Super P), and polyvinylidene fluoride binder (PVDF) solution (PVDF in N-methyl-2pyrrolidinone (NMP)) at a weight ratio of 6:3:1 to form a slurry by stirring. Then the working electrodes were prepared by spreading the slurry on a hydrophilic carbon paper using a doctor blade and then drying in vacuum at 80 °C for 24 h to remove the NMP. The mass loading density of Bi_2MoO_6 is uniform and is approximately 0.45 mg cm⁻².

The electrochemical and photoelectrochemical tests

The electrochemical processes of the Bi₂MoO₆ electrodes were measured using a standard three-electrode system, which contained the working electrode of Bi₂MoO₆, the platinum counter electrode, and the Hg/HgO reference electrode in a 1 M KOH electrolyte at room temperature and atmospheric pressure. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS 10 mHz to 100 kHz at voltage amplitude of 10 mV) tests were both performed on an IviumStat electrochemical workstation. The experimental measurements of the irradiation of visible light were carried out in a 100 ml quartz electrochemical cell. A 300 W Xenon arc lamp was utilized as a visible-light source. The focused intensity on the cell was ca. 8 mWcm⁻². In the sacrificial agent experiments, 0.01 M of triethanolamine (TEA) was added to the electrolyte as the hole sacrificial agent.

Materials characterization:

Rigaku-Ultima III X-ray diffractometer with CuK α radiation ($\lambda = 1.5418$ Å) was used to determine the phase formation of the as prepared materials. The surface morphological features of as-prepared samples were studied by using FE-SEM and TEM. The elemental detection was done by using energy-dispersive X-ray spectroscopy (EDS) analyzer.

Figure S1. The CV curves of the Bi_2MoO_6 electrode at di \Box erent scan rates in the dark

Figure S2. The relationship between the peak current and the sweep rate of the Bi_2MoO_6 electrodes (the currents of the anode and cathode were abbreviated as I_a and I_c , respectively).

Figure S3. the CV curves of the Bi_2MoO_6 electrode at di \Box erent scan rates the irradiation of visible light

Figure S4. The CV curves of the Bi_2MoO_6 electrode cycling at a scan rate of 50 mV s⁻¹ under the irradiation of visible light

Figure S5 The Nyquist plots of the Bi_2MoO_6 electrode in the dark and under the irradiation of visible light

		applicat	ion	
Bi ₂ MoO ₆ -based	Capacitance	Cycling	Current density/	Reference
electrode	retention	number	Scanning rate	
BMO/TNT-3	76.7 %	1000	1 mA cm ⁻²	RSC Adv., 2019, 9,
				4693
${\rm Bi}_{2}{\rm MoO}_{6}$ nanoplates	66.7 %	200	10 mA cm ⁻²	Solid State Sci.,
				2014, 35, 18.
Bi ₂ MoO ₆ nanowires	84.7 %	1000	10 mV s^{-1}	J. Electrochem.
				Soc., 2012, 159,
				D582
Bi _{3.6} 4O _{0.36} O _{6.55} NPs	35 %	100	2 A g^{-1}	J. Solid State
				Electr., 2016, 21,
				403
Bi_2MoO_6 nanosheets	69.5%	1000	0.585 A g ⁻¹	J. Power Sources,
				2016, 331, 481
Hierarchical Bi ₂ MoO ₆	92.4%	1000	0.585 A g ⁻¹	J. Power Sources,

Table S1	The cycling	stability co	omparison of	of Bi2MoO6-based	electrode for	r supercapacitor
				2 0 0		- F - F - F - F - F - F - F - F - F - F

by visible light				
Bi ₂ MoO ₆ illuminated	92.5%	200	50 mV s ⁻¹	This work
				6, 7355
hollow microspheres				Chem. Eng., 2018,
Hierarchical Bi ₂ MoO ₆	95%	400	3 A g ⁻¹	ACS Sustain.
nanotubes				2016, 331, 481