Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electrochemical sulfonylation of alkenes with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of (*E*)-vinyl sulfones in water

Yin-Long Lai,[†]^a Yunyan Mo,[†]^a Shaoxi Yan,^a Shengling Zhang,^a Lejie Zhu,^a Jianmin Luo,^{*a} Huishi Guo,^{*a} Jianpeng Cai,^a Jianhua Liao^{*b}

^a College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512005, Guangdong Province, P. R. China.

^b School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.

[†] These authors contributed equally.

E-mail: xxyljm@163.com; gold0226@126.com; liaojianhua715@163.com.

Supporting Information

Table of contents

1. General information	. S2
2. General procedure for the optimization of reaction conditions	\$3
3. General procedure for the vinyl sulfones	S4
4. The gram-scale synthesis of the product 3a	S4
5. Cyclic voltammograms	S5
6. Spectroscopic data of products	S6
7. References	S13
8. Copies of NMR spectra of products	. S14

1. General information

Unless otherwise noted, all solvents and reagents were obtained commercially and used without further purification. Analytical thin layer chromatography (TLC) plates and the silica gel (200–300 mesh) for column chromatography were phased from Qingdao Haiyang Chemical and Special Silica Gel Co, Ltd.

Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectroscopy were performed on Bruker Advance III-400 spectrometers (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR). Chemical shifts of ¹H NMR and ¹³C NMR spectra were reported as in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0 ppm) and relative to the signal of chloroform-d (δ **7.26** ppm for ¹H NMR and δ **77.2** ppm for ¹³C NMR). Multiplicities were given as: s (singlet); br s (broad singlet); d (doublet); t (triplet); q (quartet); m (multiplets), etc. The number of protons (n) for a given resonance was indicated by nH.

Electrolysis reactions were conducted using a Model QJ3005T (32V) DC power supply purchased from Ningbo Jiuyuan Electronic Co., Ltd., China. Cyclic voltammetry (CV) analysis was performed on CHI660E electrochemical workstation (Shan ghai Chenhua Instrument Co., Ltd., China), using a glassy carbon electrode (GCE) (d = 3 mm) as working electrode, a Pt wire as counter electrode, and a saturated calomel electrode (SCE) as a reference electrode. Cyclic voltammograms were recorded at 100 mV/s scan rate. The pH value was performed on PHB-3 pH Pocket Tester (Shanghai San-Xin Co, Ltd., China).

2. General procedure for the optimization of reaction conditions

2.1 Catalyst screening

Table S1 Catalyst screening ^a

	+	sat. aq $(NH_4)_2CO_3$ catalyst (x mol %) I = 40 mA, t = 3 h, rt, air Pt-Pt, undivided cell	O S S O
1a	2a		3a
Entry	Catalyst	Catalyst loading (mol %)	Yield [%] ^b
1	<i>n</i> -Bu ₄ NI	10	88
2	$\rm NH_4 I$	10	77
3	KI	10	75
4	I_2	5	56
5	KIO ₃	10	43
6	PhI(OAc) ₂	10	48
7	<i>n</i> -Bu ₄ NBr	10	68
8	<i>n</i> -Bu ₄ NCl	10	54
9	<i>n</i> -Bu ₄ NI	5	79

^{*a*} Standard conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), catalyst (10 mol %), sat. aq (NH₄)₂CO₃ (5.0 mL) as electrolyte, Pt foils ($1.0 \times 1.5 \text{ cm}^2$) as anode and cathode, undivided cell, constant current = 40 mA, 3 h, room temperature. ^{*b*} The yield of the product was determined by ¹H NMR spectroscopy.

2.2 Electrolyte screening

 Table S2 Electrolyte screening ^a

+	electrolyte <i>n</i> -Bu ₄ NI (10 mol %) I = 40 mA, t = 3 h, rt, air Pt-Pt, undivided cell	S _S
2a		3a
Electrolyte		Yield [%] ^b
sat. aq (NH ₄) ₂ CO ₃		88
sat. aq NH ₄ HCO ₃		53
sat. aq (NH ₄) ₃ PO ₄		69
sat. aq K ₂ CO ₃		67
sat. aq CS ₂ CO ₃		75
sat. aq KOH		49
	+ 2a Electro sat. aq (N sat. aq (N	+ P_{r} $P_$

^{*a*} Standard conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), *n*-Bu₄NI (10 mol %), electrolyte (5.0 mL), Pt foils $(1.0 \times 1.5 \text{ cm}^2)$ as anode and cathode, undivided cell, constant current = 40 mA, 3 h, room temperature. ^{*b*} The yield of the product was determined by ¹H NMR spectroscopy.

2.3 Electrodes screening

Table S3 Electrodes screening ^a

		sat. aq (NH ₄) ₂ CO ₃ <i>n</i> -Bu ₄ NI (10 mol %) I = 40 mA, t = 3 h, rt, air	
Ť		electrodes undivided cell	
1a	2a		3a
Entry	Electrodes		Yield [%] ^b
1	Pt - Pt		88
2^c	Pt -	64	
3^d	Pt - R	57	
4 ^c	C -	72	
5 ^d	RVC -	70	

^{*a*} Standard conditions: **1a** (0.5 mmol), **2a** (1.0 mmol), *n*-Bu₄NI (10 mol %), sat. aq (NH₄)₂CO₃ (5.0 mL) as electrolyte, Pt foils ($1.0 \times 1.5 \text{ cm}^2$) as anode and cathode, undivided cell, constant current = 40 mA, 3 h, room temperature. ^{*b*} The yield of the product was determined by ¹H NMR spectroscopy. ^{*c*} Graphite rods (diameter: 0.5cm, height: 1.78 cm). ^{*d*} Reticulated vitreous carbon RVC (100 PPI, 1.5 cm × 1cm × 0.2 cm)

3. General procedure for the vinyl sulfones

Into a round bottom flask was added **1** (0.5 mmol, 1.0 equiv), **2** (1.0 mmol, 2.0 equiv), *n*-Bu₄NI (10 mol %) and sat. aq (NH₄)₂CO₃ (5mL).The resulting solution was electrolyzed with a pair of Pt foil ($1.0 \times 1.5 \text{ cm}^2$) as electrodes at constant current (40 mA) at ambient temperature for 3h (8.95 F/mol), The reaction mixture was extracted with ethyl acetate ($3 \times 15 \text{ mL}$). The combined organic layer was washed with brine (10 mL), dried over MgSO₄. The concentrated residue was purified by column chromatography on a silica gel to afford the pure product **3**.

4. The gram scale synthesis of the product 3a

Procedure for **3a**. To a round-bottomed flask (150 mL) was added **1a** (6 mmol, 1.0 equiv), **2a** (14 mmol, 2.5 equiv), *n*-Bu₄NI (10 mol %) and sat. aq (NH₄)₂CO₃ (80mL). The reaction flask was equipped with Pt foils as anode ($2.0 \times 3.0 \text{ cm}^2$) and cathode ($2.0 \times 3.0 \text{ cm}^2$). The solution was electrolyzed under a constant current at ambient temperature (40 mA) for 28 h (6.96 F/mol). After electrolysis, the reaction mixture was extracted with ethyl acetate (3×80 mL). The combined organic layer was washed with brine (80 mL) and dried over MgSO₄, filtered and concentrated. The resulting mixture was purified by silica gel column chromatography to afford **3a** in the yield of 72%.

5. Cyclic voltammograms

Figure 1. Cyclic voltammograms of related compounds in sat.aq $(NH_4)_2CO_3$, Using a glassy carbon electrode as working electrode (d = 3 mm), a Pt wire as counter electrode, and a saturated calomel electrode (SCE) as a reference electrode, at 100 mV/s scan rate: (a) none; (b) **1a** (0.005 M); (c) **2a** (0.005 M); (d) *n*-Bu₄NI (0.001 M); (e) **1a** (0.005 M) and *n*-Bu₄NI (0.001 M); (f) **2a** (0.005 M) and *n*-Bu₄NI (0.001 M); (g) **1a** (0.005 M) and *n*-Bu₄NI (0.001 M). **6.** Spectroscopic data of products

(*E*)-1-Methyl-4-(styrylsulfonyl)benzene (3a).¹ The crude product was purified by column chromatography on silica gel to give 3a as a white solid (105.9 mg, 82% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 16.0 Hz, 1H), 7.47 – 7.46 (m, 2H), 7.39 –7.33 (m, 5H), 6.86 (d, *J* = 16.0 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.50, 142.03, 137.86, 132.55, 131.21, 130.08, 129.16, 128.62, 127.80, 127.76, 21.70.

(*E*)-1-methoxy-2-(2-tosylvinyl)benzene (3b).² The crude product was purified by column chromatography on silica gel to give 3b as a colourless oil (116.8 mg, 81% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.88-7.81 (m, 3H), 7.41 – 7.31 (m, 4H), 7.06 (d, *J* = 16.0 Hz, 1H), 6.96 – 6.90 (m, 2H), 3.86 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.93, 144.16, 138.40, 138.13, 132.51, 130.81, 129.98, 128.36, 127.76, 121.42, 120.89, 111.38, 55.62, 21.70.

(*E*)-1-methyl-2-(2-tosylvinyl)benzene (3c).¹ The crude product was purified by column chromatography on silica gel to give 3c as a pale yellow solid solid (106.3 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 12.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.17 – 7.11 (m, 2H), 6.74 (d, *J* = 16.0 Hz, 1H), 2.40 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.45, 139.68, 138.19, 137.88, 131.44, 131.11, 130.92, 130.07, 128.67, 127.79, 126.94, 126.56, 21.69, 19.83.

(*E*)-1-methoxy-3-(2-tosylvinyl)benzene (3d).² The crude product was purified by column chromatography on silica gel to give 3d as a colourless oil (115.4 mg, 80% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 12.0 Hz, 2H), 7.62 (d, *J* = 16.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.27 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.96 – 6.93 (m, 2H), 6.84 (d, *J* = 16.0 Hz, 1H), 3.80 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.12, 144.56, 142.02, 137.88, 133.91, 130.22, 130.12, 128.06, 127.86, 121.30, 117.17, 113.47, 55.49, 21.75.

(*E*)-1-methyl-3-(2-tosylvinyl)benzene (3e).² The crude product was purified by column chromatography on silica gel to give 3e as a pale yellow solid (102.2 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 12.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.29 – 7.28 (m, 3H), 7.24 – 7.22 (m, 1H), 6.87 (d, *J* = 16.0 Hz, 1H), 2.44 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.42, 142.21, 138.89, 137.99, 132.51, 132.03, 130.05, 129.19, 129.04, 127.78, 127.52, 125.86, 21.69, 21.34.

3f

(*E*)-1-methoxy-4-(2-tosylvinyl)benzene (3f).¹ The crude product was purified by column chromatography on silica gel to give 3f as a white solid (126.9 mg, 88% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 16.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 12.0 Hz, 2H), 6.71 (d, *J* = 12.0 Hz, 1H), 3.80 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.07, 144.20, 141.81, 138.28, 130.38, 129.97, 127.61, 125.11, 124.91, 114.57, 55.50, 21.64.

(*E*)-1-methyl-4-((4-methylstyryl)sulfonyl)benzene (3g).¹ The crude product was purified by column chromatography on silica gel to give 3g as a white solid (113.1 mg, 83% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 160 Hz, 1H), 7.37 – 7.32 (m, 4H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 16.0 Hz, 1H), 2.43 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.38, 142.13, 141.85, 138.12, 130.06, 129.91, 129.85, 128.66, 127.78, 126.58, 21.72, 21.63.

(*E*)-1-fluoro-4-(2-tosylvinyl)benzene (3h).² The crude product was purified by column chromatography on silica gel to give 3h as a colourless oil (92.6 mg, 67% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 16.0 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.08 – 7.04 (m, 2H), 6.79 (d, *J* = 16.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.42 (d, *J*_{C-F} = 251.0 Hz), 144.60, 140.73, 137.81, 130.68 (d, *J*_{C-F} = 9.0 Hz), 130.13, 128.87 (d, *J*_{C-F} = 3.0 Hz), 127.83, 127.58 (d, *J*_{C-F} = 2.0 Hz), 116.41 (d, *J*_{C-F} = 2.2 Hz), 21.72.

(*E*)-1-chloro-4-(2-tosylvinyl)benzene (3i).¹ The crude product was purified by column chromatography on silica gel to give 3i as a white solid (109.8 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 16.0 Hz, 1H), 7.42 – 7.34 (m, 6H), 6.83 (d, *J* = 16.0 Hz, 1H), 2.43 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.73, 140.58, 137.68, 137.28, 131.13, 130.19, 129.85, 129.53, 128.44, 127.92, 21.78.

(E)-1-bromo-4-(2-tosylvinyl)benzene (3j).²

The crude product was purified by column chromatography on silica gel to give **3j** as a white solid (118.1 mg, 70% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 16.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 4H), 6.85 (d, *J* = 12.0 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.76, 140.66, 137.67, 132.52, 131.58, 130.21, 130.03, 128.57, 127.95, 125.69, 21.80

(*E*)-1-methyl-4-((4-(trifluoromethyl)styryl)sulfonyl)benzene (3k).¹ The crude product was purified by column chromatography on silica gel to give 3k as a white solid (89.8mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 16.0 Hz, 1H), 7.65 – 7.57 (m, 4H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 16.0 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.93, 139.99, 137.30, 136.01, 132.55 (q, *J*_{C-F} = 32.0 Hz), 130.56, 130.21, 128.82, 127.96, 126.09 (q, *J*_{C-F} = 4.0 Hz), 123.75 (q, *J*_{C-F} = 271.0 Hz).

(*E*)-2-(2-tosylvinyl)naphthalene (31).² The crude product was purified by column chromatography on silica gel to give 31 as a yellow solid (114.1 mg, 74% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.80 (m, 7H), 7.55 – 7.52 (m, 3H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 16.0 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.55, 142.15, 137.98, 134.60, 133.26, 130.98, 130.14, 130.05, 129.08, 128.81, 127.96, 127.89, 127.81, 127.12, 123.58, 21.77.

(*E*)-2-(2-tosylvinyl)pyridine (3m).¹ The crude product was purified by column chromatography on silica gel to give 3m as a yellow oil (75.2mg, 58% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.75 – 7.71 (m, 1H), 7.62 (d, J = 16.0 Hz, 1H), 7.44 (d, J = 16.0 Hz, 1H), 7.40 (d, J = 4.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.30 – 7.27 (m, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.20, 150.36, 144.72, 140.17, 137.38, 137.18, 132.29, 130.10, 128.02, 125.46, 125.06, 21.71.

(*E*)-2-(2-tosylvinyl)thiophene (3n).² The crude product was purified by column chromatography on silica gel to give 3n as a brown solid (80.7 mg, 61% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 16.0 Hz, 1H), 7.41 (d, *J* = 4.0 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 12.0 Hz, 1H), 7.06 – 7.04 (m, 1H), 6.63 (d, *J* = 16.0 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.50, 138.03, 137.18, 134.73, 132.39,

(*E*)-2-(2-tosylvinyl)furan (30).² The crude product was purified by column chromatography on silica gel to give 30 as a white solid (84.5 mg, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.46 (s, 1H), 7.40 (d, *J* = 16.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 12.0 Hz, 1H), 6.68 (d, *J* = 4.0 Hz, 1H), 6.47 – 6.46 (m, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.92, 145.69, 144.45, 138.07, 130.08, 128.56, 127.74, 125.28, 116.83, 112.70, 21.73.

(*E*)-(2-(phenylsulfonyl)vinyl)benzene (4a).³ The crude product was purified by column chromatography on silica gel to give 4a as a pale yellow solid (99.0 mg, 81% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.94 (m, 2H), 7.69 (d, J = 16.0 Hz, 1H), 7.62 – 7.60 (m, 1H), 7.56 – 7.53 (m, 2H), 7.49 – 7.47 (m, 2H), 7.41 – 7.38 (m, 3H), 6.87 (d, J = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.62, 140.85, 133.52, 132.47, 131.35, 129.47, 129.21, 128.70, 127.76, 127.43.

(*E*)-1-methoxy-2-(styrylsulfonyl)benzene (4b).² The crude product was purified by column chromatography on silica gel to give 4b as a yellow oil (105.6 mg, 77% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 1H), 7.69 (d, *J* = 12.0 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.50 – 7.49 (m, 2H), 7.40 – 7.39 (m, 3H), 7.16 – 7.08 (m, 2H), 7.01 (d, *J* = 8.0 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.48, 143.43, 135.50, 132.98, 131.09, 129.60, 129.17, 128.80, 128.60, 127.12, 120.86, 112.57, 56.42.

(*E*)-1-methoxy-4-(styrylsulfonyl)benzene (4c).³ The crude product was purified by column chromatography on silica gel to give 4c as a white oil (118.0 mg, 86% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 16.0 Hz, 1H), 7.46 – 7.44 (m, 2H), 7.38 – 7.35 (m, 3H), 7.00 (d, *J* = 12.0 Hz, 2H), 6.89 – 6.84 (m, 1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.67, 141.43, 132.58, 132.28, 131.09, 129.95, 129.12, 128.55, 128.08, 114.67, 55.77.

(*E*)-1-*tert*-butyl-4-(styrylsulfonyl)benzene (4d). ³ The crude product was purified by column chromatography on silica gel to give 4d as a white solid (103.7 mg, 69% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 16.0 Hz, 1H), 7.55 (d, J = 8.0Hz, 2H), 7.47 (d, J = 4.0 Hz, 2H), 7.39 – 7.37 (m, 3H), 6.87 (d, J = 16.0 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 157.46, 142.09, 137.75, 132.57, 131.23, 129.18, 128.66, 127.74, 127.66, 126.50, 35.35, 31.18.

(*E*)-1-fluoro-4-(styrylsulfonyl)benzene (4e). ³ The crude product was purified by column chromatography on silica gel to give 4e as a pale yellow solid (85.3 mg, 65% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (m, 2H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.49 – 7.47 (m, 2H), 7.43 – 7.37 (m, 3H), 7.26 – 7.19 (m, 2H), 6.86 (d, *J* = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.74 (d, *J*_{C-F} = 255.0 Hz), 142.82, 136.93 (d, *J*_{C-F} = 3.0 Hz), 132.34, 131.47, 130.64 (d, *J* = 10.0 Hz), 129.25, 128.74, 127.24, 116.77 (d, *J* = 23.0 Hz).

(*E*)-1-chloro-4-(styrylsulfonyl)benzene (4f). ³ The crude product was purified by column chromatography on silica gel to give 4f as a brown solid (101.8 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 16.0 Hz, 1H), 7.41 – 7.37 (m, 4H), 7.31 – 7.28 (m, 3H), 6.73 (d, J = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.10, 140.07, 139.35, 132.23, 131.46, 129.70, 129.20, 129.18, 128.71, 126.95.

(*E*)-1-chloro-2-(styrylsulfonyl)benzene (4g). ² The crude product was purified by column chromatography on silica gel to give 4g as a pale yellow solid (89.2 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 16.0 Hz, 1H), 7.53 – 7.39 (m, 8H), 7.08 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.44, 138.43, 134.66, 132.95, 132.50, 132.03, 131.57, 130.85, 129.27, 128.85, 127.60, 125.47.

(*E*)-1-bromo-4-(styrylsulfonyl)benzene (4h). ³ The crude product was purified by column chromatography on silica gel to give 4h as a white solid (109.9 mg, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 8.0 Hz, 2H), 8.09 – 8.05 (m, 3H), 7.86 (d, J = 8.0 Hz, 2H), 7.81 – 7.76 (m, 3H), 7.22 (d, J = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.25, 139.96, 132.80, 132.32, 131.57, 129.36, 129.29, 128.79, 126.97.

(*E*)-1-(styrylsulfonyl)-4-(trifluoromethyl)benzene (4i). ³ The crude product was purified by column chromatography on silica gel to give 4i as a pale yellow solid (95.3 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 16.0 Hz, 1H), 7.51 – 7.49 (m, 2H), 7.43 – 7.38 (m, 3H), 6.88 (d, *J* = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.54 (d, *J*_{C-F} = 1.0 Hz), 144.20, 135.12 (q, *J*_{C-F} = 33.0 Hz), 132.16, 131.75, 129.30, 128.87, 128.37, 126.61 (q, *J*_{C-F} = 3.0 Hz), 126.43, 123.30 (q, *J* = 272.0 Hz).

The crude product was purified by column chromatography on silica gel to give **4j** as a white solid (85.9 mg, 57% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 16.0 Hz, 1H), 7.47 (d, J = 4.0 Hz, 2H), 7.39 (d, J = 4.0 Hz, 3H), 6.85 (d, J = 12.0 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.62, 143.25, 142.39, 134.75, 132.31, 131.43, 129.23, 128.93, 128.71, 127.28, 119.85, 24.73.

(*E*)-2-(styrylsulfonyl)naphthalene (4k). ³ The crude product was purified by column chromatography on silica gel to give 4k as a white solid (103.1 mg, 70% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.00– 7.97 (m, 2H), 7.91 – 7.88 (m, 2H), 7.75 (d, J = 16.0 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.50 – 7.47 (m, 2H), 7.40 – 7.35 (m, 3H), 6.94 (d, J = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.70, 137.66, 135.29, 132.52, 132.44, 131.34, 129.81, 129.51, 129.36, 129.32, 129.21, 128.72, 128.10, 127.79, 127.49, 122.69.

(*E*)-2-(styrylsulfonyl)thiophene (41).³ The crude product was purified by column chromatography on silica gel to give 41 as a yellow solid (85.1 mg, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 3H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.43 – 7.38 (m, 3H), 7.14 (t, *J* = 4.0 Hz, 1H), 6.97 (d, *J* = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.41, 142.33, 134.08, 133.63, 132.41, 131.46, 129.27, 128.78, 128.19, 128.05.

7. References

- 1. M. Pramanik, K. Choudhuri, P. Mal, Asian J. Org. Chem., 2019, 8, 144.
- 2. Y. Zhao, Y.-L. Lai, K.-S. Du, D.-Z. Lin, J.-M. Huang, J. Org. Chem., 2017, 82, 9655.
- 3. S. Cai, Y. Xu, D. Chen, L. Li, Q. Chen, M. Huang, W. Weng, Org. Lett., 2016, 18, 2990.

8. Copies of NMR spectra of products

 $\begin{array}{c} 7.38\\ -7.97\\ -7.95\\ -7.66\\ -7.22\\ -7.22\\ -6.88\\ -6.84\\ -6.84\\ \end{array}$

28.10 28.08 7.1.33 6.90 6.80

