Supplementary Information

Syntheses, Spectroscopic, Redox, and Structural Properties of Homoleptic Iron(III/II) Dithione Complexes

Kyle J. Colston,^a Sara A. Dille,^a Benjamin Mogesa,^b Jacilynn Brant,^c Victor N. Nemykin,^d Matthias Zeller,^e and Partha Basu*^a

a Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis IN, 46202

b Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh PA, 15282

c The Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433

d Department of Chemistry, University of Tennessee, Knoxville TN, 37996

e Department of Chemistry, Purdue University, West Layfette IN, 47907

* Corresponding author: basup@iupui.edu

Refinement details for $[2][PF_6]_2$ and $[3][FeCl_4][PF_6]_2$

Methods for vibrating sample magnetometry of solid-state sample.

- Figure S1. ¹H NMR spectrum of [4][PF₆]₃.
- Figure S2. ¹H NMR spectrum of [3][PF₆]₃.
- Figure S3. Inverse molar magnetic susceptibility of [4][PF₆]₃.
- Figure S4. $Fe^{III/II}$ based couples of [1][PF₆]₂, [2][PF₆]₂, [3][PF₆]₃, and [4][PF₆]₃.
- Figure S5. Ligand-based couples and DPV of [1][PF₆]₂.
- Figure S6. Ligand-based couples at different scan rates and DPV of [3][PF₆]₃.
- Figure S7. EDDMs of **1**.
- Figure S8. Molecular orbital diagram for 3.
- Table S1. Temperature dependent δ_{para} for [3][PF₆]₃ and [4][PF₆]₃.
- Table S2. TD-DFT predicted excited states transitions of **1**.
- Table S3. Electronic spectra for 1, $[2][PF_6]_2$, $[3][PF_6]_3$, and $[4][PF_6]_3$.
- Table S4. Optimization energies of high and low spin states of 2 and 3.
- Table S5. Optimized coordinates of 1.
- Table S6. Optimized coordinates 3.

Refinement details for [2][PF₆]₂ and [3][FeCl₄][PF₆]₂

All nonhydrogen atoms were refined anisotropically by full matrix least squares against F². H atoms were positioned geometrically and constrained to ride on their parent atoms. C-H bond distances were constrained to 0.99 and 0.98 Å for CH₂ and CH₃ moieties, respectively. Methyl CH₃ were allowed to rotate but not to tip to best fit the experimental electron density. $U_{iso}(H)$ values were set to a multiple of $U_{eq}(C)$ with 1.5 for CH₃ and 1.2 for CH₂ units, respectively.

The crystal of $[2][PF_6]_2$ was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, with the two components being related by a 180 rotation around the reciprocal axis (1 0 0). The two components were integrated using Saint and corrected for absorption using Twinabs. The structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.1680(8).

One of the [PF₆]⁻ anions was found to be disordered by a rotation about the central atom. A twofold disorder model was used for refinement. The major and minor moieties were restrained to have similar geometries (SAME restraint of Shelxl). For the minor moiety, the P-F distances were restrained to be similar. The ADPs of the major and minor P atoms and of F8 and F8B were each constrained to be identical. U^{ij} components of atomic anisotropic displacement parameters (ADPs) for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratios refined to 0.646(6) to 0.354(6).

In the structure of [3][FeCl₄][PF₆]₂, three of the six isopropyl groups were refined as disordered by a slight rotation around the C-N bond (C5, C6, C7; C8, C9, C10; and C25, C26, C27). The major and minor disordered moieties were each restrained to have similar geometries (SAME and SADI commands of ShelxI). U^{ij} components of ADPs for the disordered atoms closer to each other less than 2.0 Å were restrained to be similar. Subject to these conditions, the occupancy ratios refined to 0.736(18) to 0.264(18), to 0.745(12) to 0.255(12), and to 0.58(3) to 0.42(3).

The two $[PF_6]^-$ and the $[FeCl_4]^-$ units were found to be disordered by a rotation about the central atom. A two-fold disorder model was used for all three anions. The $[PF_6]^-$ anions were restrained to be

close to octahedral in shape by restraining all P-F bond distances and all cis-F•••F contacts to be similar in length for each $[PF_6]^-$ anion. The $[FeCl_4]^-$ anion moieties were restrained to be close to tetrahedral by restraining all Fe-Cl bond distances and all Cl•••Cl distances to be similar in length for both moieties. U^{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratios refined to 0.706(6) to 0.294(6) for the first $[PF_6]^-$ anion, to 0.344(8) to 0.656(8) for the second $[PF_6]^-$ anion, and to 0.413(12) to 0.587(12) for the $[FeCl_4]^-$ anion.

Methods for vibrating sample magnetometry of solid-state sample

The raw data were converted to inverse molar magnetic susceptibility (χ_{M}^{-1}) and fit with Curie-Weiss law: $\chi = C/(T - \theta)$ for T > 75K using $1/\chi = 46.118 + 1.7964(T)$.

Given the equation 1/ χ = A+B•T, the Weiss temperature (θ), the effective magnetic moment of Fe (μ_{Fe}) can be derived as follows

 $\theta = -A/B, C = 1/B, \mu Fe = 2.828*\sqrt{C}$

The results are θ = -25.67, C= 0.56 emu K/mol Oe and μ_{Fe} = 2.1 μ_B . A negative value for θ implies antiferromagnetic interactions dominate.

The magnetization data for H = 5 kOe was converted to χ_M^{-1} and fit to the same Curie-Weiss Law for all temperatures (T= 1.9 K - 300 K) using 1/ χ = 7.9187 + 2.5817(T). The (μ_{Fe}) was derived using eqn. X with θ = -3.07, C= 0.39 emu K/mol Oe and μ_{Fe} = 1.8 μ_B . The value for θ is negative but smaller than what was observed at H= 1kOe indicating weak antiferromagnetic interactions dominate the system. The μ_{Fe} at both H=1 kOE and 5 kOe support low spin Fe(III).

Figure S1. 1H NMR spectrum of [4][PF₆]₃ collected in CD (δ = 1.93 ppm) at 296 K.

Figure S2. ¹H NMR spectrum of [3][PF₆]₃ recorded as described in Figure S1.

Figure S3. Inverse molar magnetic susceptibility of complex [4][PF₆]₃ at 1kOe (dashed line) and 5kOe (dotted line) from 1.9K to 300K.

All electrochemical data presented below is recorded as described in Figure 3.

Figure S4. Fe^{III/II} based redox couples for $[1][PF_6]_2$ (blue), $[2][PF_6]_2$ (orange), $[3][PF_6]_3$ (red), and $[4][PF_6]_3$ (gray).

Figure S5. Ligand-based couples (left) and DPV (right) of [1][PF₆]₂.

Figure S6. Ligand-based couples at different scan rates (left) and DPV (right) of $[3][PF_6]_3$.

Figure S7. Electron density difference maps (EDDMs) of **1** PCM-TD-DFT calculations for **1** were performed in acetonitrile using B3LYP with 6-311G* for light atoms and the LANL2DZ effective core potential for Fe. Attempts to model the electronic spectra for **1** with full electron basis sets for Fe were unsatisfactory in both gas and solution phase calculations, and all attempts to model the electronic spectra of **3** were unsuccessful. Electron accepting orbitals are colored green while electron donating orbitals are blue. Transition energies and participating orbitals are included for each EDDM. TD-DFT output for each complex excited state is included in Table S2.

Figure S8. Frontier orbitals and energy diagrams of **3**. Energies are relative and each molecular orbital is paired with its corresponding energy on the diagram. HOMO and LUMO are highlighted blue for clarity.

Table S1. δ_{para} shifts for $\textbf{[3]}[\text{PF}_6]_3$ and $\textbf{[4]}[\text{PF}_6]_3$ at various temperatures.

T (K)	H _A ((1H)	H _B (1H)	H _C (2H)	H _D (2H	H)	H _E (2H)	H _F (9H)	H _G (9H)	H _H (4H)
296	30	.88	24.52	17.86	6.06		5.46	3.81	3.55	-0.39
286	31	.92	25.56	18.66	6.12		5.54	3.80	3.52	-0.40
273	33	.95	26.85	19.66	6.16		5.60	3.80	3.53	-0.41
263	35	.53	27.79	20.41	6.20)	5.63	3.78	3.51	-0.42
253	37	.21	28.79	21.25	6.23	1	5.66	3.77	3.50	-0.42
243	39	.17	29.95	22.14	6.27	,	5.70	3.78	3.49	-0.43
					[3][PF	-6]3				
Т (К)	CH ₂	CH ₂	CH ₂	CH ₂	CH ₂	CH ₂	CH ₂	CH (6H)	CH ₃	CH ₃ (6H)
	(2H)	(2H)	(1H)	(1H)	(2H)	(2H)	(2H)		(12H)	
296	26.70	24.17	6.15	5.60	5.34	4.83	3.72	2.74	1.34	0.45
286	27.90	25.25	6.21	5.66	5.33	4.64	3.68	2.84	1.32	0.35
273	29.53	26.67	6.31	5.76	5.35	4.44	3.69	3.00	1.34	0.26
263	30.83	27.72	6.34	5.79	5.30	4.23	3.64	3.06	1.30	0.13
253	32.28	28.92	6.40	5.86	5.29	4.05	3.63	3.18	1.29	0.03
243	33.76	30.08	6.45	5.93	5.28	3.87	3.62	3.27	1.27	-0.06

[**4**][PF₆]₃

Table S2. TD-DFT calculated excited states for 1.

Excited State 180 ->197 181 ->198 192 ->194 192 ->198 193 ->195 193 ->197 This state for of Total Energy, Copying the ex	1: Singlet-A 0.18776 -0.18484 -0.15289 -0.39899 0.15596 0.40655 optimization and/or E(TD-HF/TD-DFT) xcited state density	1.1068 eV 1120.25 nm f=0.0004 <s**2>=0.000 * second-order correction. = -4017.06446100 y for this state as the 1-particle RhoCI density.</s**2>
Excited State 180 ->197 181 ->198 187 ->197 191 ->195 191 ->195 192 ->195 192 ->195 192 ->197 192 ->198 193 ->194 193 ->198	2: Singlet-A -0.12010 -0.12330 0.23442 0.13988 0.33114 0.12939 -0.11429 -0.24589 -0.17915 0.11361 -0.17206 0.24673	1.1419 eV 1085.77 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 180 ->198 181 ->197 187 ->198 191 ->194 191 ->197 191 ->198 192 ->194 192 ->197 192 ->198 193 ->195 193 ->198	3: Singlet-A 0.12194 -0.12146 0.23473 0.13972 -0.13026 0.33103 0.11521 -0.17649 0.24964 0.11248 0.24214 0.17548	1.1425 eV 1085.22 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 180 ->198 181 ->197 192 ->195 192 ->197 193 ->194 193 ->198	4: Singlet-A 0.14802 0.14939 0.24490 0.38817 0.24444 0.38605	2.0414 eV 607.34 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 180 ->197 181 ->198 187 ->197 191 ->194 191 ->195 191 ->197	5: Singlet-A 0.10640 0.10673 0.22698 -0.14651 0.18801 0.35974	2.1144 eV 586.38 nm f=0.0002 <s**2>=0.000</s**2>

191 ->198 192 ->194 192 ->198 193 ->195 193 ->197	-0.12646 0.10176 0.27856 0.10219 0.27800	
Excited State 180 ->198 181 ->197 187 ->198 191 ->194 191 ->195 191 ->197 191 ->198 192 ->195 192 ->197 193 ->194 193 ->198	6: Singlet-A -0.10724 0.10593 0.22692 0.18816 0.14655 0.12711 0.36063 0.10054 0.27582 -0.10272 -0.27959	2.1151 eV 586.19 nm f=0.0002 <s**2>=0.000</s**2>
Excited State 192 ->194 192 ->198 193 ->195 193 ->197	7: Singlet-A 0.48754 -0.16048 -0.44048 0.14560	2.8249 eV 438.89 nm f=0.0034 <s**2>=0.000</s**2>
Excited State 192 ->194 192 ->195 192 ->197 192 ->198 193 ->194 193 ->195 193 ->197 193 ->198	8: Singlet-A 0.38427 -0.22327 0.11476 -0.10141 0.22208 0.42685 -0.11508 -0.11981	2.8492 eV 435.16 nm f=0.0184 <s**2>=0.000</s**2>
Excited State 192 ->194 192 ->195 192 ->197 192 ->198 193 ->194 193 ->195 193 ->198	9: Singlet-A -0.21216 -0.40092 0.10690 0.11319 0.41153 -0.23264 0.12162 -0.11023	2.8497 eV 435.08 nm f=0.0192 <s**2>=0.000</s**2>
Excited State 192 ->195 192 ->197 193 ->194 193 ->198	10: Singlet-A 0.41833 -0.23136 0.41036 -0.22812	2.9574 eV 419.24 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 193 ->196	11: Singlet-A 0.68536	2.9931 eV 414.23 nm f=0.0205 <s**2>=0.000</s**2>
Excited State 192 ->196	12: Singlet-A 0.68493	2.9938 eV 414.13 nm f=0.0211 <s**2>=0.000</s**2>

Excited State 187 ->198 191 ->194 191 ->198	13: Singlet-A -0.13418 0.63295 -0.23799	3.0756 eV	403.13 nm	f=0.0022	<s**2>=0.000</s**2>
Excited State 187 ->197 191 ->195 191 ->197	14: Singlet-A -0.13427 0.63318 -0.23822	3.0781 eV	402.80 nm	f=0.0022	<s**2>=0.000</s**2>
Excited State 187 ->196 191 ->196	15: Singlet-A 0.13154 0.68812	3.2140 eV	385.77 nm	f=0.0038	<s**2>=0.000</s**2>
Excited State 184 ->194 184 ->196 185 ->194 185 ->195 186 ->194 188 ->195 189 ->194 189 ->195 190 ->194	16: Singlet-A 0.12208 -0.14923 -0.10028 -0.11224 0.25164 -0.15387 -0.18197 0.11882 0.50887	3.3187 eV	373.59 nm	f=0.1009	<s**2>=0.000</s**2>
Excited State 184 ->195 185 ->194 185 ->196 186 ->195 188 ->194 188 ->195 189 ->194 189 ->195 190 ->195	17: Singlet-A -0.11730 -0.11495 -0.15164 0.25234 -0.16477 0.16202 0.12633 0.15147 0.49574	3.3207 eV	373.37 nm	f=0.1009	<s**2>=0.000</s**2>
Excited State 184 ->194 185 ->195 186 ->196 188 ->194 188 ->195 189 ->194 189 ->195 190 ->196	18: Singlet-A -0.18813 -0.19490 0.17519 0.16242 -0.35905 0.35982 0.15967 0.22942	3.3751 eV	367.35 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 188 ->194 188 ->195 189 ->194 189 ->195	19: Singlet-A 0.44564 0.18270 -0.21198 0.44001	3.3944 eV	365.26 nm	f=0.0039	<s**2>=0.000</s**2>
Excited State 188 ->195 189 ->194	20: Singlet-A 0.42267 0.41987	3.4216 eV	362.35 nm	f=0.0819	<s**2>=0.000</s**2>

190 ->194 190 ->195	0.23054 -0.25258				
Excited State 188 ->194 189 ->195 190 ->194 190 ->195	21: Singlet-A 0.44737 -0.44176 0.18494 0.19882	3.4225 eV	362.26 nm	f=0.0824	<s**2>=0.000</s**2>
Excited State 184 ->194 185 ->195 186 ->196 188 ->194 188 ->195 189 ->194 189 ->195 190 ->196	22: Singlet-A -0.18999 -0.18664 0.24145 -0.11711 0.26809 -0.26530 -0.11820 0.38414	3.5967 eV	344.72 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 184 ->194 184 ->195 184 ->196 185 ->194 185 ->195 186 ->194 189 ->196 190 ->194	23: Singlet-A 0.14874 -0.16971 -0.17209 -0.17481 -0.14370 0.23093 0.40774 -0.31469	3.6379 eV	340.81 nm	f=0.0782	<s**2>=0.000</s**2>
Excited State 184 ->194 184 ->195 185 ->194 185 ->195 185 ->196 186 ->195 187 ->194 188 ->196 190 ->195	24: Singlet-A 0.16889 0.14235 0.14298 -0.16872 0.17362 -0.22934 0.10022 0.40991 0.30762	3.6390 eV	340.71 nm	f=0.0797	<s**2>=0.000</s**2>
Excited State 184 ->195 185 ->194 186 ->195 187 ->194 188 ->196 191 ->198	25: Singlet-A -0.10545 -0.10608 0.11887 0.60682 0.13764 -0.13115	3.6895 eV	336.05 nm	f=0.0015	<s**2>=0.000</s**2>
Excited State 184 ->194 185 ->195 186 ->194 187 ->195 189 ->196 191 ->197	26: Singlet-A -0.10684 0.10480 -0.12017 0.60141 0.15752 -0.13017	3.6907 eV	335.93 nm	f=0.0019	<s**2>=0.000</s**2>

Excited State 184 ->195 185 ->194 186 ->194 187 ->195 189 ->196 190 ->194	27: Singlet-A 0.15753 0.16458 -0.19680 -0.25875 0.51796 0.11421	∆ 3.7425 eV	331.29 nm	f=0.0032	<s**2>=0.000</s**2>
Excited State 184 ->194 184 ->195 185 ->194 185 ->195 186 ->195 187 ->194 188 ->196 190 ->195	28: Singlet-A -0.16982 -0.10342 -0.10089 0.15442 0.20194 -0.24366 0.51715 -0.11194	∆ 3.7439 eV	331.17 nm	f=0.0033	<s**2>=0.000</s**2>
Excited State 184 ->194 184 ->195 185 ->194 185 ->195 190 ->196	29: Singlet-A 0.28972 0.14155 -0.14263 0.30397 0.50416	3.7856 eV	327.51 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 184 ->194 184 ->195 184 ->197 185 ->194 185 ->195 185 ->198	30: Singlet-A 0.20378 -0.41363 -0.14948 0.42371 0.20312 0.15173	3.8015 eV	326.14 nm	f=0.0002	<s**2>=0.000</s**2>
Excited State 184 ->194 184 ->195 185 ->194 185 ->195 186 ->194	31: Singlet-A -0.22983 0.22072 0.20773 0.22381 0.52348	3.8481 eV	322.20 nm	f=0.0851	<s**2>=0.000</s**2>
Excited State 184 ->194 184 ->195 185 ->194 185 ->195 186 ->195	32: Singlet-A 0.21436 0.23365 0.21993 -0.22084 0.52071	3.8495 eV	322.08 nm	f=0.0845	<s**2>=0.000</s**2>
Excited State 182 ->194 182 ->195 183 ->194 183 ->195 187 ->196 191 ->196	33: Singlet-A -0.13235 -0.11529 0.11723 -0.13266 0.61321 -0.11297	3.9497 eV	313.90 nm	f=0.0100	<s**2>=0.000</s**2>
Excited State	34: Singlet-A	4.0437 eV	306.61 nm	f=0.0059	<s**2>=0.000</s**2>

180 ->195 181 ->194 182 ->194 182 ->195 183 ->194 183 ->195 187 ->196	0.11322 -0.12087 0.31362 0.25929 -0.28034 0.29989 0.29202				
Excited State 182 ->195 183 ->194 184 ->196 185 ->196 186 ->195	35: Singlet-A 0.15891 0.15039 0.11335 0.57645 0.16469	4.0619 eV	305.24 nm	f=0.0025	<s**2>=0.000</s**2>
Excited State 182 ->194 183 ->195 183 ->196 184 ->196 185 ->196 186 ->194	36: Singlet-A -0.16034 0.15652 -0.10064 0.57539 -0.11563 0.16017	4.0637 eV	305.11 nm	f=0.0023	<s**2>=0.000</s**2>
Excited State 184 ->194 185 ->195 186 ->196 188 ->197 189 ->198 190 ->196	37: Singlet-A 0.16698 0.15944 0.59964 0.11082 -0.11662 -0.13906	4.0788 eV	303.97 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 179 ->194 182 ->194 182 ->195 182 ->196 183 ->194 183 ->195 183 ->196 184 ->196 185 ->196	38: Singlet-A -0.12461 -0.19994 0.30278 0.20231 0.29220 0.21626 -0.16785 -0.11150 -0.23325	4.0930 eV	302.91 nm	f=0.0160	<s**2>=0.000</s**2>
Excited State 179 ->195 182 ->194 182 ->195 182 ->196 183 ->194 183 ->195 183 ->196 184 ->196 185 ->196	39: Singlet-A 0.12434 -0.29456 -0.20758 -0.17085 -0.21053 0.29534 -0.20525 -0.23696 0.10493	4.0948 eV	302.78 nm	f=0.0160	<s**2>=0.000</s**2>
Excited State 188 ->197 189 ->198	40: Singlet-A 0.43519 0.47365	4.1564 eV	298.30 nm	f=0.0214	<s**2>=0.000</s**2>

190 ->197	-0.16028				
Excited State 188 ->198 189 ->197	41: Singlet-A -0.44100 0.49117	4.1565 eV	298.29 nm	f=0.0225	<s**2>=0.000</s**2>
Excited State 186 ->196 188 ->197 189 ->198	42: Singlet-A -0.15381 0.47028 -0.44740	4.1616 eV	297.92 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 188 ->198 189 ->197 192 ->198 193 ->197	43: Singlet-A 0.47319 0.41428 0.11080 -0.10088	4.1671 eV	297.53 nm	f=0.0086	<s**2>=0.000</s**2>
Excited State 190 ->197 190 ->198	44: Singlet-A 0.35928 0.54019	4.2047 eV	294.87 nm	f=0.0830	<s**2>=0.000</s**2>
Excited State 188 ->197 190 ->197 190 ->198	45: Singlet-A 0.13530 0.52287 -0.35935	4.2048 eV	294.86 nm	f=0.0845	<s**2>=0.000</s**2>
Excited State 180 ->194 180 ->195 181 ->194 181 ->195 182 ->194 182 ->195 183 ->194 183 ->195 186 ->196	46: Singlet-A 0.17144 0.10770 -0.10966 0.17170 0.27559 -0.31065 0.31373 0.27416 -0.12090	4.2800 eV	289.68 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 187 ->195 187 ->197 187 ->198 191 ->197	47: Singlet-A -0.12053 0.55260 0.13190 -0.33731	4.3116 eV	287.56 nm	f=0.0042	<s**2>=0.000</s**2>
Excited State 187 ->194 187 ->197 187 ->198 191 ->198	48: Singlet-A -0.11995 -0.13177 0.55331 -0.33817	4.3118 eV	287.54 nm	f=0.0042	<s**2>=0.000</s**2>
Excited State 184 ->195 184 ->197 185 ->194 185 ->198	49: Singlet-A -0.13553 0.45133 0.13351 -0.45107	4.3221 eV	286.86 nm	f=0.0055	<s**2>=0.000</s**2>
Excited State	50: Singlet-A	4.4334 eV	279.66 nm	f=0.0006	<s**2>=0.000</s**2>

180 ->194 180 ->195 181 ->194 181 ->195 182 ->194 182 ->195 183 ->194 183 ->195 191 ->199	0.33179 0.16698 -0.26073 0.33859 -0.16867 0.17548 -0.17852 -0.14274 -0.11223				
Excited State 180 ->195 181 ->194 181 ->195 183 ->196 186 ->198 190 ->198	51: Singlet-A 0.40928 0.40408 0.15588 0.18057 0.13130 -0.15658	4.4418 eV	279.13 nm	f=0.0339	<s**2>=0.000</s**2>
Excited State 180 ->194 180 ->195 181 ->194 181 ->195 182 ->196 186 ->197 190 ->197	52: Singlet-A 0.43131 0.11348 0.10987 -0.39366 -0.16304 0.13221 -0.14873	4.4422 eV	279.11 nm	f=0.0362	<s**2>=0.000</s**2>
Excited State 182 ->194 182 ->195 182 ->196 183 ->195 183 ->196 184 ->197 185 ->198	53: Singlet-A -0.20362 -0.10969 0.24703 0.20867 0.42224 0.19251 0.18836	4.4540 eV	278.37 nm	f=0.0751	<s**2>=0.000</s**2>
Excited State 182 ->194 182 ->195 182 ->196 183 ->194 183 ->196 184 ->198 185 ->197	54: Singlet-A 0.10199 -0.20074 0.42457 -0.19935 -0.24708 -0.19763 0.20079	4.4556 eV	278.27 nm	f=0.0753	<s**2>=0.000</s**2>
Excited State 180 ->194 180 ->195 181 ->194 181 ->195 183 ->195	55: Singlet-A -0.24064 0.41228 -0.35947 -0.24470 -0.11588	4.4675 eV	277.52 nm	f=0.0060	<s**2>=0.000</s**2>
Excited State 180 ->196 182 ->196 183 ->196	56: Singlet-A -0.25134 -0.10940 -0.19532	4.4940 eV	275.89 nm	f=0.0518	<s**2>=0.000</s**2>

184 ->197 184 ->198 185 ->197 185 ->198 192 ->199	0.35803 -0.14104 0.14009 0.35632 -0.12736				
Excited State 181 ->196 182 ->196 183 ->196 184 ->197 184 ->198 185 ->198 185 ->198 193 ->199	57: Singlet-A 0.25655 -0.20633 0.11587 -0.13954 -0.35214 0.35434 -0.13877 -0.12484	4.4942 eV	275.87 nm	f=0.0511	<s**2>=0.000</s**2>
Excited State 181 ->196 186 ->197	58: Singlet-A 0.14944 0.64562	4.5804 eV	270.69 nm	f=0.0929	<s**2>=0.000</s**2>
Excited State 180 ->196 186 ->198	59: Singlet-A 0.15122 0.64469	4.5813 eV	270.63 nm	f=0.0942	<s**2>=0.000</s**2>
Excited State 181 ->196 192 ->199 193 ->199	60: Singlet-A 0.16726 0.22577 0.61639	4.6573 eV	266.22 nm	f=0.0035	<s**2>=0.000</s**2>

Table S3: Electronic spectral data of dithiolene complexes.

Compound	λ _{max} , nm(ε, M ⁻¹ cm ⁻¹)	Ref.
$[Fe(IV)(mnt)_3]^{2}$	806(3,300), 609(1,100), 404(8,000), 247(75,000)	1
[Fe(III)(mnt) ₃] ³⁻	990(700), 714(1,100), 602(sh, 1,200), 363(37,000), 250(84,000)	1
[1][PF ₆] ₂	923(4,040); 805(3,960); 593 (sh, 7,500); 362 (sh, 15 510); 305 (19 410); 218(33 550)	
[2][PF ₆] ₂	887 (3,380); 779 (3,280); 349 (13 310); 292 (23 270); 216 (37 050)	
[3][PF ₆] ₃	657 (sh, 3,790); 537 (sh, 4,920); 353 (27 620); 292 (29 010); 228 (33 530)	
[4][PF ₆] ₃	882 (4,550); 529 (3,470); 342 (28 900); 281(35 460) 215 (44 030)	

Table S4. Optimization energies (eV) for 3 and 2

	Energy (eV)					
Spin –	3	Spin	2			
HS(S=5/2)	-140303.29442758	HS(S=2)	-127485.38134359			
IS(S=3/2)	-140303.80485436	IS(S=1)	-127486.29726489			
LS(S=1/2)	-140304.71820637	LS(S=0)	-127487.32960766			

Table S5. Optimized coordinates of 1.

Fe	0.000000	-0.000000	-0.000000
S	1.926000	0.846000	-1.402000
S	-1.754000	-1.160000	1.401000
S	1.882000	-0.939000	1.401000
S	-0.229000	-2.091000	-1.401000
S	-0.127000	2.099000	1.401000
S	-1.695000	1.244000	-1.402000
С	-1.073000	3.174000	0.503000
С	-2.036000	5.304000	-0.013000
Н	-1.735000	5.534000	-1.028000
Н	-2.121000	6.227000	0.535000
С	-3.358000	4.582000	0.014000
Н	-3.715000	4.453000	1.029000
Н	-4.089000	5.153000	-0.534000
С	-2.088000	2.620000	-0.504000
С	-0.002000	5.165000	1.481000
Н	0.770000	4.435000	1.651000
С	-5.660000	2.915000	-0.719000
Н	-5.601000	2.431000	0.250000
Н	-6.432000	2.417000	-1.294000
Н	-5.981000	3.940000	-0.577000
С	-4.341000	2.796000	-1.481000
Н	-4.146000	1.753000	-1.651000
С	0.612000	6.338000	0.719000
Н	-0.077000	7.162000	0.577000
Н	0.987000	6.027000	-0.250000
Н	1.448000	6.718000	1.294000

Ν	-1.023000	4.471000	0.639000
Ν	-3.206000	3.280000	-0.638000
С	3.314000	0.498000	-0.504000
С	4.474000	-2.580000	1.482000
Н	3.456000	-2.884000	1.652000
С	5.648000	0.616000	0.013000
Н	6.508000	0.963000	-0.535000
Н	5.714000	0.990000	1.028000
С	3.286000	-0.658000	0.504000
С	5.612000	-0.889000	-0.013000
Н	6.454000	-1.277000	0.535000
Н	5.660000	-1.266000	-1.028000
С	4.593000	2.361000	-1.482000
Н	3.592000	2.713000	-1.652000
С	5.119000	-2.257000	2.828000
Н	6.151000	-1.940000	2.721000
Н	5.116000	-3.146000	3.447000
Н	4.567000	-1.484000	3.348000
Ν	4.444000	1.136000	-0.639000
Ν	4.384000	-1.350000	0.639000
Ν	-1.238000	-4.416000	-0.638000
Ν	-3.361000	-3.120000	0.639000
С	-1.225000	-3.118000	-0.503000
С	-2.291000	-5.199000	0.013000
Н	-2.420000	-6.117000	-0.534000
Н	-2.001000	-5.443000	1.028000
С	-3.576000	-4.414000	-0.013000
Н	-3.926000	-4.268000	-1.028000

- H -4.334000 -4.949000 0.535000
- C -2.213000 -2.516000 0.504000
- C -4.472000 -2.583000 1.481000
- H -4.226000 -1.550000 1.651000
- C -5.795000 -2.637000 0.719000
- H -6.165000 -3.646000 0.577000
- H -5.713000 -2.157000 -0.250000
- H -6.541000 -2.103000 1.294000
- C -0.252000 -5.158000 -1.481000
- H 0.554000 -4.468000 -1.651000
- C 5.183000 -3.699000 0.721000
- H 4.726000 -3.869000 -0.248000
- H 5.093000 -4.613000 1.296000
- H 6.241000 -3.515000 0.579000
- C 5.356000 3.444000 -0.720000
- H 4.907000 3.635000 0.248000
- H 5.311000 4.360000 -1.296000
- H 6.404000 3.209000 -0.578000
- C -4.350000 3.518000 -2.826000
- H -4.540000 4.581000 -2.720000
- H -5.140000 3.108000 -3.446000
- H -3.410000 3.381000 -3.347000
- C 5.223000 2.007000 -2.827000
- H 6.239000 1.640000 -2.720000
- H 5.263000 2.895000 -3.447000
- H 4.634000 1.261000 -3.347000
- C -0.604000 5.562000 2.827000
- H 0.167000 6.004000 3.446000

- H -0.998000 4.698000 3.347000
- H -1.395000 6.298000 2.720000
- C -0.873000 -5.527000 -2.826000
- H -0.124000 -6.006000 -3.446000
- H -1.224000 -4.644000 -3.347000
- H -1.699000 -6.222000 -2.720000
- C 0.304000 -6.360000 -0.719000
- H -0.424000 -7.150000 -0.577000
- H 0.694000 -6.067000 0.250000
- H 1.120000 -6.780000 -1.294000
- C -4.516000 -3.303000 2.827000
- H -4.757000 -4.356000 2.720000
- H -5.284000 -2.856000 3.446000
- H -3.570000 -3.212000 3.347000

	Table S	S6.	Optimized	coordinates	for	3.
--	---------	-----	-----------	-------------	-----	----

Fe 0.021000 -0.250000 -0.146000	Fe	0.021000	-0.250000	-0.146000
---------------------------------	----	----------	-----------	-----------

- S -0.942000 1.400000 -1.355000
- S 1.048000 -1.833000 1.110000
- S 1.152000 1.299000 1.027000
- S 1.672000 -0.491000 -1.668000
- S -1.614000 -0.220000 1.410000
- S -1.224000 -1.743000 -1.303000
- C -2.900000 -1.075000 0.748000
- C -5.217000 -1.738000 0.590000
- H -5.583000 -1.273000 -0.178000
- H -5.927000 -1.862000 1.238000
- C -4.684000 -3.064000 0.167000
- H -4.421000 -3.574000 0.949000
- H -5.376000 -3.560000 -0.298000
- C -2.636000 -1.968000 -0.422000
- C -4.516000 0.161000 2.129000
- H -3.702000 0.517000 2.542000
- C -3.603000 -5.241000 -1.491000
- H -3.127000 -5.436000 -0.680000
- H -3.291000 -5.819000 -2.191000
- H -4.542000 -5.383000 -1.353000
- C -3.359000 -3.776000 -1.889000
- H -2.428000 -3.704000 -2.190000
- C -5.148000 1.232000 1.313000
- H -5.966000 0.905000 0.932000
- H -4.550000 1.494000 0.608000
- H -5.335000 1.991000 1.870000

Ν	-4.134000	-0.944000	1.184000

- N -3.520000 -2.887000 -0.723000
- C -0.537000 2.821000 -0.518000
- C 2.496000 3.947000 1.514000
- H 2.799000 3.019000 1.610000
- C -0.795000 5.118000 0.139000
- H -1.138000 5.921000 -0.284000
- H -1.166000 5.064000 1.033000
- C 0.628000 2.788000 0.420000
- C 0.669000 5.185000 0.214000
- H 0.930000 5.909000 0.804000
- H 1.030000 5.371000 -0.667000
- C -2.414000 4.049000 -1.505000
- H -2.660000 3.153000 -1.817000
- C 2.282000 4.478000 2.874000
- H 1.918000 5.365000 2.818000
- H 3.118000 4.505000 3.344000
- H 1.667000 3.911000 3.347000
- N -1.201000 3.932000 -0.642000
- N 1.226000 3.919000 0.716000
- N 4.183000 -0.964000 -1.005000
- N 3.419000 -2.933000 0.822000
- C 2.928000 -1.167000 -0.761000
- C 5.219000 -1.697000 -0.195000
- H 6.045000 -1.771000 -0.699000
- H 5.404000 -1.212000 0.625000
- C 4.699000 -3.042000 0.121000
- H 4.579000 -3.546000 -0.699000

H 5.336000	-3.516000	0.677000
------------	-----------	----------

- C 2.555000 -2.049000 0.409000
- C 3.139000 -3.850000 1.957000
- H 2.222000 -3.682000 2.258000
- C 3.213000 -5.310000 1.474000
- H 4.069000 -5.471000 1.070000
- H 2.519000 -5.469000 0.829000
- H 3.096000 -5.901000 2.222000
- C 4.663000 0.059000 -2.006000
- H 3.872000 0.424000 -2.457000
- C 3.568000 4.690000 0.786000
- H 3.608000 4.384000 -0.124000
- H 4.414000 4.532000 1.213000
- H 3.373000 5.629000 0.799000
- C -3.567000 4.611000 -0.714000
- H -3.373000 4.548000 0.224000
- H -4.364000 4.112000 -0.910000
- H -3.700000 5.532000 -0.952000
- C -4.224000 -3.358000 -3.011000
- H -5.139000 -3.344000 -2.720000
- H -4.129000 -3.979000 -3.737000
- H -3.967000 -2.481000 -3.303000
- C -2.075000 4.893000 -2.709000
- H -1.371000 5.506000 -2.482000
- H -2.851000 5.387000 -2.983000
- H -1.786000 4.326000 -3.428000
- C -5.408000 -0.317000 3.188000
- H -5.469000 0.347000 3.880000

- H -5.062000 -1.132000 3.556000
- H -6.282000 -0.476000 2.822000
- C 5.480000 -0.576000 -3.013000
- H 5.796000 0.085000 -3.633000
- H 4.958000 -1.231000 -3.483000
- H 6.229000 -1.006000 -2.593000
- C 5.307000 1.163000 -1.284000
- H 6.030000 0.819000 -0.754000
- H 4.665000 1.589000 -0.712000
- H 5.648000 1.802000 -1.914000
- C 4.044000 -3.584000 3.098000
- H 4.955000 -3.698000 2.817000
- H 3.850000 -4.196000 3.811000
- H 3.914000 -2.684000 3.405000

1. Best, S. P.; Clark, R. J. H.; McQueen, R. C. S.; Walton, J. R., Spectroelectrochemical (electronic and FTIR) studies of trismaleonitriledithiolate) complexes. *Inorg. Chem.* **1988**, *27* (5), 884-90.