Supplementary Material

Degradation of norfloxacin by sulfate radical-based visible light-Fenton by copper-doped Bi2WO6

Xin Zhong^{1,2,*}, Wen-Ting Wu¹, Hao-Nan Jie¹, Wang-Ye Tang¹, Dan-Yan Chen¹, Tao Ruan¹, He-ping Bai^{1,2}

1.Department of Environmental Engineering and Science, Beijing Normal University, Zhuhai, Zhuhai, China;

2.College of Education for the Future, Beijing Normal University at Zhuhai, Zhuhai, China.

*Correspondence: zhongxin@bnu.edu.cn; Tel.: (+86-(0)756-3683012) (X. Zhong)

Figure S1 Schematic diagram of Cu-Bi₂WO₆ synthesis process.

Figure S2 (a) N_2 adsorption–desorption isotherms and (b) pore size distribution of Bi_2WO_6 and $5Cu-Bi_2WO_6$.

Figure S3 XRD spectra of $5Cu-Bi_2WO_6$ before and after reaction.

Figure S4 SEM images of $5Cu-Bi_2WO_6$ after reaction.

Figure S5 Degradation of different contaminant by 5Cu-Bi₂WO₆.

		1	5	J	
No.	Systems	Light	Target	Reaction time	Operation parameters
		source	pollutant	and efficiency	
1	PMS/CuBi ₂ O ₄ /VL	300W	ТС	Nearly complete	[PMS]= 0.125 mg/mL
		xenon lamp	50 mg/L	removal	[catalyst]=0.5 g/L
				60 min	
2	PMS/Co-BiVO ₄ /VL	xenon lamp	Tetracycline	Nearly complete	[PMS]= 5 mM
			hydrochloride	removal	[catalyst]=0.2 g/L
			40 mg/L	25 min	
3	MIL-53(Fe)/PS/VL	300W	tetracycline	99.6% TC	[PMS]= 8 mM
		xenon lamp	hydrochloride	60 min	[catalyst]=0.2 g/L
			300 mg/L		
4	solar/MOFs@COFs/PS	500 W	bisphenol A	82%	[PMS]= 0.5g /L
		Xenon lamp	50 mg/L	120 min	[catalyst]=0.25 g/L
5	Vis/TiO ₂ /PMS	300 W	Perfluorooctano	100%	[PMS]= 0.75 g L ⁻¹
		Xenon lamp	ic	9 h	[TiO ₂] = 0.25 g L-1
			50 mg/L		
6	Vis/Fe(II)/V(IV) self-	300 W	Sulfamethoxazo	96.6%	$[catalyst] = 0.5 \text{ g } \text{L}^{-1}, [PMS]$
	doped FeVO ₄ /PMS	Xenon lamp	le	60 min	= 0.406 mM
			0.02 mM		
7	Vis/MoS ₂ /Ag/g-	300 W	Tetracycline	79.7%	[PMS]= 0.1 mM
	C ₃ N ₄ /PMS	Xenon lamp	20 mg/L	50 min	[catalyst]=0.2 g/L
8	Vis/ Fe/C ₃ N ₄ /PS	350 W	rhodamine B	100%	[catalyst] = 400 ppm, [PS] =
		Xenon lamp	20 mg/L	40 min	3 mM
					pH = 3.5
This	Cu-Bi ₂ WO ₆ +Vis+PMS	30 W LED	Norfloxacin 20	89.27%	[catalyst]=0.5 g/L
work		lamp	mg/L	60 min	[PS]=0.4 mM
					Neutral pH

Table S1 Studies on of photocatalysts in the catalyst/PMS/PS/Vis reactions

[1] J. Zhang, C. Zhai, W. Zhao, Y. Chen, R. Yin, L. Zeng, M. Zhu. Insight into combining visible-light photocatalysis with transformation of dual metal ions for enhancing peroxymonosulfate activation over dibismuth copper oxide. Chemical Engineering Journal, 2020, 397, 125310.

[2] Xin Chen, Jiabin Zhou, Tianlei Zhang, Lidan Din. Enhanced degradation of tetracycline hydrochloride using photocatalysis and sulfate radical-based oxidation processes by Co/BiVO₄ composites. Journal of Water Process Engineering, 2019, 32, 100918.
[3] Ying Zhang, Jiabin Zhou, Junhui Chen, Xiaoqiong Feng, Weiquan Cai. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation. Journal of Hazardous Materials, 2020, 392, 122315.

[4] Shi-WenLv, Jing-MinLiu, Chun-Yang Li, Ning Zhao, Zhi-Hao Wang, Shuo Wang. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A. Chemosphere, 2020, 243, 125378.

[5] Bentuo Xu, Mohammad Boshir Ahmed, John L. Zhou, Ali Altaee. Visible and UV photocatalysis of aqueous perfluorooctanoic

acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere, 2020, 243, 125366.

[6] Junlei Zhang, Wei Zhao, Zhi Li, Gang Lu, Mingshan Zhu. Visible-light-assisted peroxymonosulfate activation over Fe(II)/V(IV) self-doped FeVO₄ nanobelts with enhanced sulfamethoxazole degradation: Performance and mechanism. Chemical Engineering Journal, 2021, 403, 126384.

[7] Chongyue Jin, Jin Kang, Zhilin Li, Min Wang, Zengmin Wu, Yuanhua Xie. Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate. Applied Surface Science, 514, 2020, 146076.
[8] Hamed Heidarpour, Mohsen Padervand, Mohammad Soltanieh, Manouchehr Vossoughi. Enhanced decolorization of rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C₃N₄ photocatalyst. Chemical Engineering Research and Design, 2020, 153, 709-720.

Table S2 Possible intermediates of NOF during the reaction Structure Name m/zÖ QН F Ò NOF m/z=320HN QН O N1 m/z=350ΗN QН Ò N2 m/z=336 HN QН Ò N3 m/z=322 H₂N °0

