Supporting Information

Electronic and structural characterisation of polycrystalline platinum disulfide thin films

Kuanysh Zhussupbekov^{1,2,†}, Conor P. Cullen^{2,3}, Ainur Zhussupbekova^{1,2}, Igor V. Shvets^{1,2}, Georg S. Duesberg⁴, Niall McEvoy^{2,3#} and Cormac Ó Coileáin^{2,3§}



Figure S1: XRD of polycrystalline thin-film PtS₂ on PyC/SiO₂/Si substrate

As the PtS_2 was thin (initial thickness of 2nm Pt) the signal was quite weak, thus the XRD spectra was acquired by a 14 hour scan. Two peaks associated with Pt compounds can be distinguished: One more intense at ~63° attributable PtS_2 (103) and second less intense at ~78° which is likely a convolution of contributions from PtS_2 and PtS. The peaks associated with the Si substrate and conductive PyC layer are also evident. The peaks also indicate a degree of preferential orientation of the polycrystalline film, supported by the STM observations of the PtS_2 .

¹ School of Physics, Trinity College Dublin, Dublin 2, Ireland

² AMBER Centre, CRANN Institute, Trinity College Dublin, Dublin 2, Ireland

³ School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40, Ireland

⁴ Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr, München 85579 Neubiberg, Germany