Supporting Information

Chirality Dependent Inverse-Melting and Re-entrant Gelation in α -Cyclodextrin/1-Phenylethylamine Mixtures

Reut Shapira, Sapir Katalan, Rachel Edrei and Yoav Eichen*

Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Technion City 3200008 Haifa Israel. E-mail: yoav@ch.technion.ac.il

Supporting Figures, Tables and Equations

Figure S1: Transmittance results of α CD/S-PEA mixtures having different concentrations of α CD. Left: Transmittance as a function of the temperature (heat-and-cool cycle, 0.13 °C/min) of **a**) 0.15gr/ml, **b**) 0.2 gr/ml, **c**) 0.25 gr/ml and **d**) 0.3 gr/ml mixtures. **Right:** Sigmoid midpoints T₀ and Δ T (as error bars) for each sample at a heating and cooling rate of 0.13°C/min. Yellow and light yellow: cold gel phases, blue: liquid phase, light red: hot gel phase.

Equation S1:

$$\Phi(T) = p + \Phi_0 \left[\frac{b}{1 + e^{\frac{(T - T_{0,1})}{\Delta T_1}}} + \frac{1 - b}{1 + e^{\frac{(T - T_{0,2})}{\Delta T_2}}} \right]$$

where Φ_0 and p are the initial and final values in the fitting regime, respectively, $T_{0,1}$ and $T_{0,2}$ are the two sigmoid midpoints, ΔT_1 and ΔT_2 are the width of the decay region for $T_{0,1}$ and $T_{0,2}$ respectively, and b is the relative part of each sigmoid function.

Figure S2: Transmittance results of α CD/S-PEA 0.25 gr/ml: data points (black), cold gel melting fitting curve (equation S1, red) and hot gel formation fitting curve (equation 4, green).

Temperature region	Equation	Parameter	Fitting value	error
23 ⁰ -74 ⁰ C	Equation S1	Φ₀	0.03	0.003
		У	0.646	0.003
		b	0.10	0.02
		T _{0,1}	58	1
		T _{0,2}	68	1
		ΔT_1	-3.9	0.4
		ΔT_2	-2.4	0.4
74ºC-87ºC	Equation 4	Φ ₀	1.06	0.06
		У	0.26	0.01
		T _{0,3}	74	1
		ΔT_3	6.2	0.4

Table S1: Trans	mittance fitting	parameters of	of aCD/S-PEA	0.25 gr/ml:
-----------------	------------------	---------------	---------------------	-------------

Figure S3: Transmittance results of **aCD/PEA** mixtures measured at different heating rates: a) transmittance of **aCD/R-PEA** as a function of the temperature (0.25 gr/ml), b) Sigmoid midpoints T0 and ΔT (as error bars) for each sample, c) transmittance of **aCD/S-PEA** as a function of the temperature (0.2 gr/ml), d) Sigmoid midpoints T₀ and ΔT (as error bars) for each sample. Yellow and light yellow: cold gel phases, blue: liquid phase, light red: hot gel phases, grey: hysteresis, and white: uncharacterized conditions.

Figure S4: ¹H-NMR spectra of **\alphaCD/R-PEA** at 27°C (1), 42°C (2), 57°C (3) and 82°C (4). Chemical shifts (ppm, DMSO-*d*₆ capillary): 0.4 (PEA-CH₃), 1.3-4 (protic hydrogen atoms), 2.5 (DMSO), 2.9 (α CD H₂,H₄), 3.0 (PEA-CH), 3.1-3.4 (α CD –H₃,H₅,H₆), 4.2 (α CD-H₁), 6.2-6.4 (PEA-aromatic hydrogen atoms).

Figure S5: ¹H-NMR spectra of αCD/S-PEA at 27°C (1), 44°C (2), 57°C (3) and 73°C (4).

Figure S6: Raman spectra of PEA (bottom), αCD/R-PEA (middle) and αCD/S-PEA (top) at different temperatures: 0°C, 20°C, 60°C and 90°C.

<u>Figure S7:</u> : Light microscopy images (left) and cryo-SEM pictures (right) of α CD/S-PEA "cold gel"(top), α CD/S-PEA "hot gel" (middle) and α CD/R-PEA "hot gel" (bottom).

Figure S8: SAXS pattern of **aCD/S-PEA** hot gel (left) and **aCD/R-PEA** hot gel (right) in capillary 90°C.

Equation S2:

$$I(h, A, a) = \frac{A}{h^4} + a$$

where, A is constants reflected particle Surface area, concentration factors, contrast between particle and solvent; a – background.

Figure S9: Experimental and fitting equation S2 for α CD/S-PEA (left) and α CD/R-PEA (right) SAXS (Log – Log scales).

Table S2: SAXS fitting parameters

Parameter	αCD/S-PEA cold gel	α CD/S-PEA hot gel	αCD/R-PEA hot gel
а	1036 ± 145	2580 ± 140	3970 ± 122
Α	31 ± 9	47 ± 2	5 ± 2

Figure S10: WAXS pattern of **aCD/R-PEA** hot gel (left) and **aCD/S-PEA** cold and hot gels (middle and right).