Supporting Information

Rhodium(III)-catalyzed C–H annulation of 2-acetyl-1-arylhydrazines with sulfoxonium ylides: Synthesis of 2-arylindole

He Li,^{\dagger} Ye Lu,^{\dagger} Xinxin Jin, Shuang Sun, Limei Duan* and Jinghai Liu*

Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China

Table of Contents

1.	General information	S-2
2.	General procedure for the Rh(III)-catalyzed C-H annulation reaction	S-2
3.	Characterization data for all compounds	S-2
4.	Control experiments	S-10
5.	References	S-11
6.	Copies of ¹ H and ¹³ C NMR spectra of products	S-12

1. General information

All reactions were carried out under air atmosphere unless otherwise noted. Solvents were purified by standard techniques without special instructions. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance II-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C); DMSO- d_6 was used as the solvents. The chemical shifts are reported in ppm down field (δ), the coupling constants J are given in Hz. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. IR spectra were recorded on a NEXUS FT-IR spectrometer. High resolution mass spectra were recorded on a GC-TOF mass spectrometry. TLC was carried out on SiO₂ (silica gel 60F₂₅₄, Merck), and the spots were located with UV light. Flash chromatography was carried out on SiO₂ (silica gel 60, 200-300 meth).

The starting materials $1a-1q^{[1]}$, $2a-2p^{[2]}$ were synthesized according the previous literatures.

2. General procedure for the Rh(III)-catalyzed C-H annulation reaction

A reaction flask was charged with a mixture of *N*-arylacetohydrazide (1) (0.2 mmol), sulfoxonium ylides (2) (0.24 mmol, 1.2 equiv.), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mol%), AgNTf₂ (7.8 mg, 0.02 mmol, 10 mol%), NaOAc (8.2 mg, 0.1 mmol, 50 mol%), HOAc (12.0 mg, 0.2 mmol, 1.0 equiv.), and DCE (1.0 mL). The reaction mixture was stirred at 100 °C under N₂ atmosphere for 12 h. After the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure, and the residue was purified via silica gel chromatography (eluent: petroleum ether/ethyl acetate = 3:1) to give product **3**.

3. Characterization data of products

N-(2-phenyl-1H-indol-1-yl)acetamide (3aa)

Yellow solid (46.6 mg, 93% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.15 (s, 1H), 7.64-7.59 (m, 3H), 7.50-7.46 (m, 2H), 7.42–7.38 (m, 1H), 7.30–7.28 (m, 1H), 7.23–7.21 (m, 1H), 7.14–7.10 (m, 1H), 6.72 (s, 1H), 2.04 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.66, 140.42, 138.00, 131.37, 129.10, 128.48, 128.22, 125.96, 122.82, 121.09, 120.84, 109.90, 100.72, 20.96; IR (neat): 3254, 2932, 1676, 1522, 1441, 1334, 1298, 1136, 934, 799, 761, 743 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 250.1106 [M]+; found: 250.1113.

N-(6-methyl-2-phenyl-*1H*-indol-1-yl)acetamide (3ba)

Yellow solid (42.8 mg, 81% yield), mp 243–245 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.05 (s, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.48-7.45 (m, 3H), 7.39-7.36 (m, 1H), 7.06 (s, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.65 (s, 1H), 2.42 (s, 3H), 2.03 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.61, 139.81, 138.44, 132.20, 131.55, 129.05, 128.26, 128.07, 123.87, 122.76, 120.57, 109.68, 100.58, 21.92, 20.97; IR (neat): 3260, 2923, 1677, 1523, 1457, 1367, 1264, 1132, 1077, 812, 750, 691 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 264.1263 [M]+; found: 264.1268.

N-(5-methyl-2-phenyl-1*H*-indol-1-yl)acetamide (3ca)

Yellow solid (47.1 mg, 89% yield), mp 242–244 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.07 (s, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.48-7.45 (m, 2H), 7.40–7.37 (m, 2H), 7.16 (d, J = 8.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.62 (s, 1H), 2.40 (s, 3H), 2.02 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.59, 140.45, 136.52, 131.50, 129.71, 129.05, 128.34, 128.11, 126.21, 124.30, 120.43, 109.64, 100.28, 21.57, 20.94; IR (neat): 3253, 2920, 1677, 1518, 1444, 1368, 1264, 1196, 1133, 1076, 793, 761 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 264.1263 [M]+; found: 264.1264.

N-(5,6-dimethyl-2-phenyl-*1H*-indol-1-yl)acetamide (3da)

Yellow solid (44.0 mg, 79% yield), mp 252–254 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.01 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.47-7.43 (m, 2H), 7.38-7.33 (m, 2H), 7.03 (s, 1H), 6.57 (s, 1H), 2.32 (s, 3H), 2.30 (s, 3H), 2.02 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.56, 139.54, 137.12, 131.54, 129.19, 129.01, 128.12, 127.98, 124.28, 120.89, 110.16, 100.15, 20.98, 20.60, 20.17; IR (neat): 3259, 2923, 1677, 1522, 1467, 1370, 1273, 1197, 1133, 1076, 750, 691 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 278.1419 [M]+; found: 278.1420.

N-(5-methoxy-2-phenyl-*1H*-indol-1-yl)acetamide (3ea)

Yellow solid (48.8 mg, 87% yield), mp 213–215 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.05 (s, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.49-7.46 (m, 2H), 7.40 (d, J = 4.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.10 (s, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.64 (s, 1H), 3.79 (s, 3H), 2.02 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.63, 155.03, 140.93, 133.24, 131.50, 129.06, 128.37, 128.10, 126.46, 112.73, 110.68, 102.73, 100.50, 55.93, 20.95; IR (neat): 3256, 2925, 1678, 1472, 1370, 1264, 1217, 1143, 1076, 1031, 761, 692 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 280.1212 [M]+; found: 280.1218.

N-(5-(tert-butyl)-2-phenyl-1H-indol-1-yl)acetamide (3fa)

Yellow solid (49.6 mg, 81% yield), mp 194–196 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.11 (s, 1H), 7.62-7.57 (m, 3H), 7.47-7.45 (m, 2H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 12.0 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 6.67 (s, 1H), 2.03 (s, 3H), 1.36 (s, 9H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.63, 143.55, 140.48, 136.37, 131.56, 129.06, 128.32, 128.12, 125.81, 120.93, 116.62, 109.43, 100.87, 34.77, 32.24, 20.93; IR (neat): 3257, 2926, 1678, 1525, 1469, 1368, 1265, 1196, 1076, 798, 755, 696 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 306.1732 [M]+; found: 306.1740.

N-(5-butyl-2-phenyl-*1H*-indol-1-yl)acetamide (3ga)

Yellow solid (52.7 mg, 86% yield), mp 202–203 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.06 (s, 1H), 7.60 (d, J = 4.0 Hz, 2H), 7.49-7.45 (m, 2H), 7.40-7.37 (m, 2H), 7.17 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.63 (s, 1H), 2.67 (t, J = 8.0 Hz, 2H), 2.02 (s, 3H), 1.63–1.59 (m, 2H), 1.36–1.31 (m, 2H), 0.92 (t, J = 8.0 Hz, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.60, 140.46, 136.67, 134.95, 131.52, 129.05, 128.34, 128.12, 126.13, 123.74, 119.88, 109.65, 100.43, 35.43, 34.42, 22.19, 20.94, 14.31; IR (neat): 3260, 2925, 1677, 1524, 1469, 1368, 1266, 1196, 1132, 1076, 755, 690 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 306.1732 [M]+; found: 306.1739.

N-(2,5-diphenyl-1*H*-indol-1-yl)acetamide (3ha)

Yellow solid (54.2 mg, 83% yield), mp 196–198 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.22 (s, 1H), 7.87 (s, 1H), 7.71-7.65 (m, 4H), 7.53-7.33 (m, 9H), 6.78 (s, 1H), 2.06 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.70, 141.87, 141.20, 137.69, 133.77, 131.27, 129.33, 129.13, 128.59, 128.23, 127.27, 127.02, 126.58, 122.26, 118.95, 110.39, 101.14, 100.00, 20.96; IR (neat): 3260, 2924, 1682, 1599, 1466, 1371, 1261, 1196, 1132, 1076, 759, 697 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 326.1419 [M]+; found: 326.1424.

N-(5-fluoro-2-phenyl-1H-indol-1-yl)acetamide (3ia)

Yellow solid (45.6 mg, 85% yield), mp 244–246 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.15 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.50-7.47 (m, 2H), 7.43-7.36 (m, 2H), 7.31-7.28 (m, 1H), 7.06-7.02 (m, 1H), 6.71 (s, 1H), 1.99 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.66, 158.30 (d, ¹*J*_{*C*-*F*} = 239.0 Hz), 142.18, 134.64, 131.06, 129.13, 128.74, 128.26, 126.27 (d, ³*J*_{*C*-*F*} = 11.0 Hz), 111.10, 110.98 (d, ⁴*J*_{*C*-*F*} = 4.0 Hz), 110.70, 105.64 (d, ²*J*_{*C*-*F*} = 24.0 Hz), 100.67, 20.93; IR (neat): 3252, 2925, 1676, 1519, 1471, 1370, 1263, 1207, 1127, 858, 751, 693 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 268.1012 [M]+; found: 268.1017.

N-(6-chloro-2-phenyl-1H-indol-1-yl)acetamide (3ja)

Yellow solid (44.4 mg, 78% yield), mp 305–307 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.18 (s, 1H), 7.60 (s, 3H), 7.49-7.47 (m, 2H), 7.43-7.39 (m, 2H), 7.13 (d, J = 8.0 Hz, 1H), 6.75 (s, 1H),

2.04 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.73, 141.47, 138.47, 130.91, 129.14, 128.75, 128.26, 127.64, 124.73, 122.29, 121.46, 109.77, 100.79, 20.99; IR (neat): 3246, 2921, 1677, 1518, 1452, 1369, 1258, 1196, 1075, 812, 757, 689 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 284.0716 [M]+; found: 284.0718.

N-(5-chloro-2-phenyl-1*H*-indol-1-yl)acetamide (3ka)

Yellow solid (49.0 mg, 86% yield), mp 254–256 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.20 (s, 1H), 7.65-7.60 (m, 3H), 7.51-7.47 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.20 (dd, *J* = 4.0, 8.0 Hz, 1H), 6.71 (s, 1H), 2.02 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.65, 141.96, 136.50, 130.86, 129.16, 128.85, 128.30, 127.06, 125.55, 122.74, 120.02, 111.54, 100.31, 20.93; IR (neat): 3238, 2923, 1678, 1525, 1444, 1369, 1270, 1195, 1007, 871, 754, 733 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 284.0716 [M]+; found: 284.0724.

N-(6-bromo-2-phenyl-1H-indol-1-yl)acetamide (3la)

Yellow solid (52.0 mg, 79% yield), mp 297–298 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.17 (s, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.56-7.52 (m, 2H), 7.50-7.46 (m, 2H), 7.42 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 6.74 (s, 1H), 2.04 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.75, 141.31, 138.81, 130.86, 129.14, 128.77, 128.26, 125.00, 124.06, 122.64, 115.60, 112.63, 100.82, 20.99; IR (neat): 3249, 2923, 1675, 1520, 1488, 1371, 1196, 1132, 1076, 812, 757, 691 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 328.0211 [M]+; found: 328.0218.

N-(5-bromo-2-phenyl-*1H*-indol-1-yl)acetamide (3ma)

Yellow solid (56.6 mg, 86% yield), mp 270–272 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.21 (s, 1H), 7.79 (s, 1H), 7.62-7.60 (m, 2H), 7.50-7.47 (m, 2H), 7.44-7.40 (m, 1H), 7.31-7.46 (m, 2H), 6.71 (s, 1H), 2.02 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.63, 141.79, 136.75, 130.81, 129.16, 128.86, 128.31, 127.74, 125.29, 123.03, 113.44, 111.98, 100.20, 20.93; IR (neat): 3249, 2923, 1679, 1522, 1460, 1369, 1268, 1194, 1076, 869, 755, 693 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 328.0211 [M]+; found: 328.0217.

N-(5-iodo-2-phenyl-1H-indol-1-yl)acetamide (3na)

Yellow solid (65.5 mg, 87% yield), mp 220–222 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.20 (s, 1H), 7.97 (s, 1H), 7.60 (d, J = 4.0 Hz, 2H), 7.50-7.46 (m, 3H), 7.43-7.39 (m, 1H), 7.16 (d, J = 4.0 Hz, 1H), 6.69 (s, 1H), 2.02 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.62, 141.32, 137.18, 130.77, 129.16, 128.83, 128.57, 128.30, 112.40, 99.90, 84.76, 20.93; IR (neat): 3256, 2926, 1680, 1521, 1459, 1369, 1262, 1194, 1042, 789, 756, 693 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 376.0073 [M]+; found: 376.0084.

N-(2-phenyl-5-(trifluoromethyl)-*1H*-indol-1-yl)acetamide (3oa)

Yellow solid (47.1 mg, 74% yield), mp 252–254 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.33 (s, 1H), 8.01 (s, 1H), 7.64-7.60 (m, 2H), 7.52-7.42 (m, 5H), 6.89 (s, 1H), 2.05 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.65, 142.51, 139.41, 130.63, 129.20, 129.04, 128.42, 125.40, 122.04 (q, *J* = 30.0 Hz), 119.21 (d, *J* = 3.0 Hz), 118.52 (d, *J* = 4.0 Hz), 110.76, 101.48, 20.92; IR (neat): 3244, 2923, 1684, 1526, 1447, 1372, 1268, 1164, 1104, 892, 746, 696 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 318.0980 [M]+; found: 318.0991.

1-acetamido-2-phenyl-1H-indol-5-yl acetate (3pa)

Yellow solid (46.9 mg, 76% yield), mp 166–168 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.31 (s, 1H), 8.31 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.52-7.48 (m, 2H), 7.45-7.39 (m, 2H), 6.89 (s, 1H), 3.87 (s, 3H), 2.05 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.68, 167.42, 142.07, 140.42, 130.75, 129.18, 128.93, 128.34, 125.57, 123.76, 123.32, 122.71, 109.99, 101.87, 52.31, 20.91; IR (neat): 3263, 2952, 1713, 1613, 1523, 1435, 1372, 1254, 1195, 1091, 755, 693 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 308.1161 [M]+; found: 308.1166.

N-(5-cyano-2-phenyl-1H-indol-1-yl)acetamide (3qa)

Yellow solid (33.0 mg, 60% yield), mp 209–211 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.37 (s, 1H), 8.14 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.52-7.44 (m, 4H), 6.87 (s, 1H), 2.04 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.72, 142.81, 139.58, 130.34, 129.23, 128.45, 126.34, 125.75, 125.73, 120.74, 111.26, 103.36, 101.26, 20.90; IR (neat): 3243, 2920, 2223, 1678, 1607, 1469, 1448, 1333, 1264, 1196, 1132, 1076 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 275.1059 [M]+; found: 275.1061.

N-(2-(o-tolyl)-1H-indol-1-yl)acetamide (3ab)

Yellow solid (40.2 mg, 76% yield), mp 255–256 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 10.09 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.33 (s, 2H), 7.26 (d, *J* = 8.0 Hz, 3H), 7.21–7.17 (m, 1H), 7.13–7.10 (m, 1H), 6.52 (s, 1H), 2.30 (s, 3H), 1.89 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.50, 139.51, 137.75, 136.75, 130.90, 130.67, 130.62, 128.87, 125.91, 125.69, 122.40, 120.76, 120.66, 109.71, 101.59, 20.77, 20.60; IR (neat): 3246, 2918, 1680, 1596, 1457, 1384, 1264, 1169, 1132, 1076, 1042, 747 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 264.1263 [M]+; found: 264.1264. *N*-(2-(*m*-tolyl)-*1H*-indol-1-yl)acetamide (3ac)

Yellow solid (44.9 mg, 85% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.11 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.45–7.41 (m, 2H), 7.38–7.34 (m, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.22–7.18 (m, 2H), 7.13–7.10 (m, 1H), 6.69 (s, 1H), 2.38 (s, 3H), 2.03 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.60, 140.58, 138.23, 138.01, 131.31, 129.11, 128.93, 125.98, 125.28, 122.73, 121.03, 120.78, 109.87, 100.57, 21.55, 20.93; IR (neat): 3251, 2922, 1682, 1608, 1524, 1455, 1370, 1266, 1076, 780, 747, 699 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 264.1263 [M]+; found: 264.1266.

N-(2-(p-tolyl)-1H-indol-1-yl)acetamide (3ad)

Yellow solid (47.6 mg, 90% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.09 (s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.30–7.25 (m, 3H), 7.20–7.17 (m, 1H), 7.13–7.09 (m, 1H), 6.66 (s, 1H), 2.36 (s, 3H), 2.03 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.66, 140.42, 138.00, 131.37, 129.10, 128.48, 128.22, 125.96, 122.82, 121.09, 120.84, 109.90, 100.72, 20.96; IR (neat): 3263, 2922, 1681, 1525, 1456, 1369, 1265, 1197, 1019, 811, 793, 744 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 264.1263 [M]+; found: 264.1270.

N-(2-(4-methoxyphenyl)-1H-indol-1-yl)acetamide (3ae)

Yellow solid (48.8 mg, 87% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.08 (s, 1H), 7.57–7.53 (m, 3H), 7.25 (d, J = 8.0 Hz, 1H), 7.19–7.15 (m, 1H), 7.12–7.03 (m, 3H), 6.61 (s, 1H), 2.36 (s, 3H), 3.81 (s, 3H), 2.03 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.65, 159.66, 140.43, 137.78, 129.59, 126.08, 123.78, 122.41, 120.96, 120.55, 114.60, 109.74, 99.69, 55.68, 20.95; IR (neat): 3257, 2919, 1678, 1609, 1501, 1458, 1368, 1249, 1180, 1028, 786, 745 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 280.1212 [M]+; found: 280.1208.

N-(2-([1,1'-biphenyl]-4-yl)-1H-indol-1-yl)acetamide (3af)

Yellow solid (55.5 mg, 85% yield), mp 255–256 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.18 (s, 1H), 7.82–7.71 (m, 6H), 7.61 (d, *J* = 4.0 Hz, 1H), 7.52–7.48 (m, 2H), 7.41–7.38 (m, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.23–7.19 (m, 1H), 7.15–7.11 (m, 1H), 6.78 (s, 1H), 2.07 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.69, 140.01, 139.94, 138.16, 130.44, 129.48, 128.65, 128.14, 127.33, 127.10, 126.03, 122.89, 121.13, 120.85, 109.91, 100.86, 21.01; IR (neat): 3281, 2922, 1772, 1600, 1487, 1408, 1259, 1132, 1077, 844, 764, 744 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 326.1419 [M]+; found: 326.1427.

N-(2-(4-fluorophenyl)-1H-indol-1-yl)acetamide (3ag)

Yellow solid (34.3 mg, 64% yield), mp 255–256 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.12 (s, 1H), 7.66–7.62 (m, 2H), 7.58 (d, J = 8.0 Hz, 1H), 7.35–7.27 (m, 3H), 7.20–7.18 (m, 1H), 7.14–7.10 (m, 1H), 6.70 (s, 1H), 2.03 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.72, 162.43 (d, ¹*J*_{*C*-*F*} = 244.0 Hz), 139.45, 137.89, 130.34 (d, ³*J*_{*C*-*F*} = 8.0 Hz), 127.88 (d, ⁴*J*_{*C*-*F*} = 4.0 Hz), 125.90, 122.86, 121.98 (d, ²*J*_{*C*-*F*} = 30.0 Hz), 116.10 (d, ²*J*_{*C*-*F*} = 21.0 Hz), 109.89, 100.73, 20.93; IR (neat): 3247, 2918, 1677, 1527, 1498, 1456, 1370, 1223, 1133, 841, 783, 745 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 268.1012 [M]+; found: 268.1020.

N-(2-(4-chlorophenyl)-*1H*-indol-1-yl)acetamide (3ah)

Yellow solid (37.6 mg, 66% yield), mp 255–256 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 11.14 (s, 1H), 7.64–7.58 (m, 3H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.23–7.19 (m, 1H), 7.14–7.10 (m, 1H), 6.75 (s, 1H), 2.04 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.73, 139.14, 138.09, 133.24, 130.22, 129.83, 129.18, 125.87, 123.10, 121.21, 120.96, 109.95, 101.19, 20.94; IR (neat): 3255, 2918, 1678, 1596, 1409, 1384, 1196, 1132, 1076, 1042, 783, 745 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 284.0716 [M]+; found: 284.0725.

N-(2-(4-(trifluoromethyl)phenyl)-*1H*-indol-1-yl)acetamide (3ai)

Yellow solid (34.4 mg, 54% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.22 (s, 1H), 7.89–7.84 (m, 4H), 7.63 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27–7.23 (m, 1H), 7.17–7.14 (m, 1H), 6.88 (s, 1H), 2.05 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.77, 138.71, 138.38, 135.35, 128.65, 126.04, 126.01, 125.80, 123.54, 123.37, 121.37, 121.22, 110.09, 102.32, 20.94; IR (neat): 3207, 2922, 1678, 1530, 1457, 1416, 1328, 1274, 1158, 1072, 784, 744 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 318.0980 [M]+; found: 318.0988.

methyl 4-(1-acetamido-1H-indol-2-yl)benzoate (3aj)

Yellow solid (41.3 mg, 67% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.21 (s, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.25–7.22 (m, 1H), 7.16–7.12 (m, 1H), 6.88 (s, 1H), 3.88 (s, 3H), 2.04 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.70, 166.42, 139.07, 138.48, 135.88, 129.93, 129.09, 128.13, 125.84, 123.52, 121.35, 121.20, 110.07, 102.30, 52.68, 20.92; IR (neat): 3272, 2920, 1718, 1678, 1609, 1435, 1385, 1276, 1196, 1076, 770, 747 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 308.1161 [M]+; found: 308.1172.

N-(2-(naphthalen-1-yl)-1H-indol-1-yl)acetamide (3ak)

Yellow solid (42.7 mg, 71% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 10.98 (s, 1H), 8.05–7.99 (m, 3H), 7.66 (d, J = 8.0 Hz, 1H), 7.62–7.51 (m, 4H), 7.31 (d, J = 8.0 Hz, 1H), 7.27–7.23 (m, 1H), 7.19–7.15 (m, 1H), 6.69 (s, 1H), 1.84 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.63, 138.23, 137.10, 133.75, 132.33, 129.23, 128.67, 128.62, 127.05, 126.56, 126.12, 125.92, 125.56, 122.75, 121.00, 120.86, 109.91, 102.99, 20.74; IR (neat): 3264, 2924, 1685, 1506, 1456, 1371, 1308, 1268, 1044, 793, 777, 747 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 300.1263 [M]+; found: 300.1273.

N-(2-(furan-2-yl)-1H-indol-1-yl)acetamide (3al)

Yellow solid (45.6 mg, 95% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.23 (s, 1H), 7.81 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.21–7.17 (m, 1H), 7.13–7.09 (m, 1H), 6.79 (s, 1H), 6.75 (s, 1H), 6.64–6.63 (m, 1H), 2.16 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.69, 145.72, 143.54, 137.67, 130.96, 125.72, 123.14, 121.21, 120.99, 112.36, 109.60, 107.75, 98.66, 21.08; IR (neat): 3229, 2921, 1680, 1517, 1438, 1373, 1268, 1196, 1076, 1009, 797, 740 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 240.0899 [M]+; found: 240.0909.

N-(2-(thiophen-2-yl)-1H-indol-1-yl)acetamide (3am)

Yellow solid (47.7 mg, 93% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.24 (s, 1H), 7.59 (d, J = 4.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 4.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.18–7.13 (m, 2H), 7.10–7.07 (m, 1H), 6.83 (s, 1H), 2.13 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.91, 137.56, 134.09, 132.26, 128.18, 127.03, 126.21, 125.82, 122.93, 121.23, 120.70, 109.64, 99.48, 21.19; IR (neat): 3231, 2922, 1685, 1524, 1456, 1370, 1262, 1180, 1133, 1077, 789, 745 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 256.0670 [M]+; found: 256.0674. (*E*)-*N*-(2-styryl-1*H*-indol-1-yl)acetamide (3an)

Ph

NHAc

Yellow solid (44.8 mg, 81% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 11.10 (s, 1H), 7.62–7.54 (m, 3H), 7.40–7.32 (m, 5H), 7.23–7.21 (m, 1H), 7.17–7.14 (m, 1H), 7.09–7.05 (m, 2H), 6.89 (s, 1H), 2.20 (s, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.90, 137.94, 137.32, 137.16, 130.55, 129.30, 128.44, 126.94, 126.06, 122.74, 121.02, 120.69, 116.35, 109.44, 98.24, 79.29, 21.09; IR (neat): 3250, 2923, 1682, 1597, 1455, 1371, 1255, 1133, 1076, 1043, 956, 747 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 276.1263 [M]+; found: 276.1270.

N-(2-methyl-1H-indol-1-yl)acetamide (3ao)

Me NHAc

Yellow solid (30.9 mg, 82% yield), mp 255–256 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 10.90 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.10–7.06 (m, 1H), 7.04–7.00 (m, 1H), 6.24 (s, 1H), 2.33 (s, 3H), 2.13 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.71, 137.32, 136.43, 126.03, 121.29, 120.21, 119.86, 108.89, 98.41, 20.93, 11.61; IR (neat): 3243, 2922, 1683, 1561, 1459, 1372, 1326, 1264, 1076, 1014, 775, 745 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 188.0590 [M]+; found: 188.0591.

N-(2-butyl-*1H*-indol-1-yl)acetamide (3ap)

NHAc

Yellow solid (35.0 mg, 76% yield), mp 255–256 °C. ¹H NMR (DMSO- d_6 , 400 MHz) δ 10.89 (s, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.09–7.06 (m, 1H), 7.03–7.00 (m, 1H), 6.22 (s, 1H), 2.56 (t, J = 8.0 Hz, 2H), 2.12 (s, 3H), 1.65–1.61 (m, 2H), 1.42–1.36 (m, 2H), 0.93 (t, J = 8.0 Hz, 3H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 169.60, 141.60, 136.45, 125.99, 121.33, 120.18, 119.96, 108.94, 97.58, 30.19, 25.16, 22.32, 20.93, 14.17; IR (neat): 3258, 2926, 1682, 1558, 1459, 1372, 1263, 1196, 1132, 1077, 1042, 744 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 230.1419 [M]+; found: 230.1424.

N-(2-cyclohexyl-1H-indol-1-yl)acetamide (3aq)

Yellow solid (34.4 mg, 67% yield), mp 255–256 °C. ¹H NMR (DMSO-*d*₆, 400 MHz) δ 10.87 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 1H), 7.09–7.05 (m, 1H), 7.03–6.99 (m, 1H), 6.19 (s, 1H), 2.12 (s, 3H), 2.00 (d, *J* = 8.0 Hz, 1H), 1.88 (d, *J* = 16.0 Hz, 1H), 1.88 (d, *J* = 12.0 Hz, 2H), 1.71 (d, *J* = 8.0 Hz, 1H), 1.43–1.23 (m, 6H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 169.64, 146.72, 136.31, 125.97, 121.38, 120.19, 120.13, 109.02, 95.69, 34.85, 33.51, 32.32, 26.49, 26.44, 26.15, 20.97; IR (neat): 3252, 2923, 1677, 1529, 1445, 1372, 1261, 1132, 1020, 778, 744, 733 (cm⁻¹); HRMS (EI) calcd for C₁₈H₁₃N₃O₃: 256.1576 [M]+; found: 256.1579.

4. Control experiments

(1) Experiment of deuterium kinetic isotope effect

A reaction flask was charged with a mixture of $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 2.5 mol %), AgNTf₂ (7.8 mg, 0.02 mmol, 10.0 mol %), **1a** (0.10 mmol) and **1a**- d_5 (0.10 mmol), **2a** (0.24 mmol, 47.1 mg), NaOAc (8.2 mg, 0.1 mmol, 50 mol%), HOAc (12.0 mg, 0.2 mmol, 1.0 equiv.), and DCE (1.0 mL). The reaction was stirred at 100 °C under N₂ for 2 h, then immediately quenched with EtOAc. The volatiles were removed under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether /ethyl acetate = 3:1) to afford **3aa** and **3aa**- d_4 (16.3 mg, 33%). A 3.3 of KIE was observed by ¹H NMR determination.

(2) Intermolecular competition experiment between substrates 1c and 1p

A reaction flask was charged with a mixture of [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol %), AgNTf₂ (7.8 mg, 0.02 mmol, 10.0 mol %), NaOAc (8.2 mg, 0.1 mmol, 50 mol%), HOAc (12.0 mg, 0.2 mmol, 1.0 equiv.), 1c (0.10 mmol), 1p (0.10 mmol), 2a (0.24 mmol, 47.1 mg, 1.2 equiv.) and DCE (1.0 mL). The reaction was stirred at 100 °C under N₂ for 12 h. After the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure, and the residue was purified via silica gel chromatography (eluent: petroleum ether/ethyl acetate = 3:1) to give product 3ca (17.2 mg, 73%) and 3pa (9.1 mg, 30%) at a ratio of 2.4:1.

5. References:

- 1. D. Zhao, Z. Shi, F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 12426.
- 2. R. D. C. Gallo, A. Ahmad, G. Metzker, A. C. B. Burtoloso, Chem. Eur. J. 2017, 23, 16980.

6. Copies of ¹H and ¹³C NMR spectra of products

¹H NMR, 400 MHz, DMSO- d_6

¹H NMR, 400 MHz, DMSO- d_6

S-30

¹H NMR, 400 MHz, DMSO- d_6

¹H NMR, 400 MHz, DMSO- d_6

S-42

