Supplementary Material

Opening the Structure for Transport of Ions: Improvement of the Structural and Chemical Properties of Single-walled Carbon Nanohorns for Supercapacitor Electrodes

Wojciech Zieba,¹ Piotr Olejnik,² Stanisław Koter,³ Piotr Kowalczyk,⁴

Marta E. Plonska-Brzezinska²* and Artur P. Terzyk¹*

¹ Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland
 ² Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
 ³ Faculty of Chemistry, Department of Physical Chemistry, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland
 ⁴ College of Science, Health, Engineering and Education, Murdoch University, WA, 6150,

Australia

Figure S1. N_2 (77 K) adsorption isotherms in graphene cylinders simulated from GCMC method. Values of pore diameters are displayed on the plot.

Figure S2. Experimental N_2 (77 K) adsorption isotherms inside SWNHs computed from Eq. (5) (in manuscript). The theoretical N_2 (77 K) adsorption isotherms inside SWNHs obtained from the fitting of the experimental ones by GCMC kernel are given by solid lines (Eq. (6) in manuscript).

Figure S3. High-resolution C 1s XPS spectra for (A) SWCNH and (B) SWCNH-ox-1.5.

Figure S4. XPS atomic % of different forms of surface oxygen after wet HNO₃ modification based on O 1s XPS spectra.

Figure S5. High-resolution N 1s XPS spectra for the r-SWCNH-ox-1.5.

Figure S6. Deconvolution of Raman spectra for SWCNH (first row), SWCNH-ox-1.5 (second row) and r-SWCNH-ox-1.5 (bottom row).

Figure S7. Cyclic voltammograms of SWCNH-ox-1.5 in 0.1 M different supporting electrolytes (A) NaCl, (B) Na₂SO₄, (C) H₂SO₄, and (D) (Et)₄NCl at the different sweep rate: 5, 10, 15, 30, 50, 75, and 100 mV s⁻¹. (E) Dependence of the current of SWCNH at 0.2 V (vs. Ag/AgCl) for (\bullet) NaCl, (∇) Na₂SO₄, (\bullet) H₂SO₄, and (\diamond) (Et)₄NCl.

Element	SWCNH	SWCNH-ox-0.5	SWCNH-ox-1	SWCNH-ox-1.5	SWCNH-ox-3	r-SWCNH-ox-1.5		
	%Atomic concentration							
С	97.79	92.4	90.0	90.3	88.4	89.6		
0	2.21	7.6	10.0	9.7	11.6	7.5		
Ν	0	0	0	0	0	2.9		

Table S1. The specific element content based on the XPS results.

Table S2. Studied ionic species: Stokes radius, hydrated radius and standard molar enthalpy of hydration.

Ions	rs	r _h	$\Delta_{ ext{hyd}} H^{ ext{o}}$
TONS	(nm)	(nm)	(kJ mol ⁻¹)
Na ⁺	0.184	0.358	-240.6
(Et) ₄ N ⁺	0.282	0.400	-154.9
SO4 ²⁻	0.230	0.379	-903.7
Cl	0.121	0.332	-363.0

Stokes radius (r_s), hydrated radius (r_h) and standard molar enthalpy of hydration ($\Delta_{hyd}H^\circ$). The reported Stokes and hydrated radii are from Ref.¹. Standard molar enthalpy of hydration $\Delta_{hyd}H^\circ$ values are from Ref.².

Table S3. Specific capacitance of SWCNH, SWCNH-ox and r-SWCNH-ox in aqueous solution

 of different supporting electrolyte.

	Specific capacitance (F g ⁻¹)					
Materials	Integrat (0.0 – 0.3 V v	tion ΔE_1 (s. Ag/AgCl) ^[a]	I - v (slope) E_I (0.2 V vs. Ag/AgCl)			
	NaCl	H_2SO_4	NaCl	H_2SO_4		
SWCNH	32	65	29	62		
SWCNH-ox-0.5	127	175	118	165		
SWCNH-ox-1.0	169	177	159	168		
SWCNH-ox-1.5	230	233	212	228		
SWCNH-ox-3.0	227	184	218	176		
r-SWCNH-ox-1.5	95	134	88	130		

[a] at $v = 20 \text{ mV s}^{-1}$

1 A. K. Covington and T. Dickinson, *Physical Chemistry of Organic Solvent Systems*, Springer US, Boston, MA, 1973.

2D. Dobos, *Electrochemical data: a handbook for electrochemists in industry and universities*, Elsevier Scientific Pub. Co, Amsterdam; New York, 1975.