Electronic Supplementary information

Nanostructured copper molybdates as promising bifunctional electrocatalysts for overall water splitting and CO₂ reduction

Atefeh Rahmani¹, Hossein Farsi^{*1,2}

1) Department of Chemistry, University of Birjand, Birjand, Iran

2) Developing Nanomaterials for Environmental Protection Research Lab, University of Birjand, Birjand, Iran

Fig. S1. Transformed DRS data for a) direct and b) indirect transitions.

Fig. S2. Cyclic voltammograms of a, c) CuMoO₄ and b, d) Cu₃Mo₂O₉ at different end potentials and scan rates in 0.1 M NaOH.

Fig. S3. Nyquist diagrams of nano-CuMoO₄ in 0.1 M NaOH for a) in the dark and b) under illumination.

Fig. S4. Nyquist diagrams of nano- $Cu_3Mo_2O_9$ in 0.1 M NaOH for a) in the dark and b) under illumination.

Fig. S5. Linear part of Mott-Schottky plot of nano-CuMoO₄ in 0.1 M NaOH for a) in the dark and b) under illumination.

Fig. S6. Linear Mott-Schottky plot of nano-Cu₃Mo₂O₉ in 0.1 M NaOH for a) in the dark and b) under illumination.

Fig. S7. Cyclic voltammograms with different end potentials for a) $CuMoO_4$ and b) $Cu_3Mo_2O_9$, at different scan rates for c) $CuMoO_4$ and d) $Cu_3Mo_2O_9$.

Fig. S8. Comparative CVs of a) CuMoO₄, and b) Cu₃Mo₂O₉ in the presence and absence of CO₂ dissolving species.