Supporting Information

Solid carbamate pathway towards organic-inorganic hybrid

perovskites and aromatic imines

Kyu Hyung Lee,^a Sun Joo Kim,^a Hee Sun Park,^a Byung Wook Lim,^a Byeongno Lee,^a Young Jun Park,^b Wonwoo Nam,^b Nam Hwi Hur ^a,*

^a Department of Chemistry, Sogang University, Seoul 04107, Korea

^b Department of Bioinspired Science, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea

*E-mail: <u>nhhur@sogang.ac.kr</u>

X-ray crystallography. A single crystal of methyl ammonium methyl carbamate (MAC) was selected by a nylon loop (Hampton Research Co.) placed on a handmade cooper plate, which was placed inside a liquid N₂ Dewar vessel at approximately -40 °C and was mounted on a goniometer head in a N₂ cryostream. Data collections were carried out in a Bruker SMART AXS diffractometer equipped with a monochromator with a Mo K α ($\lambda = 0.71073$ Å) incident beam. The charge-coupled device (CCD) data were integrated and scaled using the Bruker-SAINT software package, and the structure was solved and refined using SHEXTL V 6.12.¹ Hydrogen atoms were located in the calculated

positions. The crystal data for MAC: $C_3H_{10}N_2O_2$, Orthorhombic, $Pna2_1$, Z = 4, a = 9.3493(2), b = 6.9787(1), c = 9.1550(2) Å, $\alpha = \beta = \gamma 90^\circ$, V = 597.33(2) Å³, $\mu = 0.097$ mm⁻¹, $\rho_{calcd} = 1.180$ g/cm³, $R_1 = 0.0243$, and w $R_2 = 0.0589$ for 1,444 unique reflections and 104 variables. The crystallographic data for MAC are listed in Table S1, and Table S2 lists the selected bond distances and angles. CCDC-2023499 for MAC contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Empirical formula	$C_{3}H_{10}N_{2}O_{2}$
Formula weight	106.13
Temperature (K)	100(2)
Wavelength (Å)	0.71073
Crystal system/space group	Orthorhombic, <i>Pna2</i> ₁
Unit cell dimensions	
a (Å)	9.3493(2)
<i>b</i> (Å)	6.9787(1)
<i>c</i> (Å)	9.1550(2)
$\alpha(^{\circ})$	90
$\beta(^{\circ})$	90
γ(°)	90
Volume (Å ³)	597.33(2)
Z	4
Calculated density (g/cm ⁻³)	1.180
Absorption coefficient (mm ⁻¹)	0.097
Reflections collected	12394
Independent reflections [<i>R</i> (int)]	1436 [0.0243]
Refinement method	Full-matrix
	least-squares on F^2
Data/restraints/parameters	1436/1/104
Goodness-of-fit on F^2	1.190

Table S1. Crystal data for methyl ammonium methyl carbamate (CH₃NH₃⁺CH₃NHCO₂⁻).

_

Table S2. Selected bond distances (Å) and bond angles (°) for methyl ammonium methyl carbamate ($CH_3NH_3^+CH_3NHCO_2^-$).

Number	Object1	Object2	Length
1	N1	Н5	0.91(1)
2	N1	H4	0.91(1)
3	N1	H6	0.84(1)
4	N1	C1	1.479(1)
5	C1	Н3	0.93(2)
6	C1	H2	0.98(2)
7	C1	H1	0.94(1)
8	C3	H8	0.89(2)
9	C3	H7	0.98(2)
10	C3	Н9	0.95(1)
11	C3	N2	1.452(1)
12	N2	H10	0.83(1)
13	N2	C2	1.3592(9)
14	C2	O2	1.2787(9)
15	C2	01	1.2694(8)

Number	Atom1	Atom2	Atom3	Angle
1	C1	N1	H4	110.4(8)
2	C1	N1	Н5	109.4(7)
3	C1	N1	H6	109.2(8)
4	H4	N1	Н5	109(1)

5	H4	N1	H6	109(1)
6	Н5	N1	H6	110(1)
7	N1	C1	H2	107.8(9)
8	N1	C1	Н3	109(1)
9	N1	C1	H1	107.5(8)
10	H2	C1	Н3	111(1)
11	H2	C1	H1	109(1)
12	Н3	C1	H1	112(1)
13	C3	N2	C2	122.93(6)
14	C3	N2	H10	119.3(8)
15	C2	N2	H10	117.4(8)
16	N2	C3	Н9	111.7(7)
17	N2	C3	H8	112(1)
18	N2	C3	H7	109(1)
19	Н9	C3	H8	110(1)
20	Н9	C3	H7	109(1)
21	H8	C3	H7	105(2)
22	N2	C2	02	117.53(6)
23	N2	C2	01	119.47(6)
24	02	C2	01	122.99(6)

Figure S1. Top-view SEM image of the MAPbI₃ layer on a TiO₂/FTO substrate (a) before and (b) after reaction with MAC vapors.

X-ray crystallography. A single crystal of 3-nitrobenzylidene methanamine was

selected by a nylon loop (Hampton Research Co.) placed on a handmade cooper plate, which was placed inside a liquid N₂ Dewar vessel at approximately -40 °C and was mounted on a goniometer head in a N₂ cryostream. Data collections were carried out in a Bruker SMART AXS diffractometer equipped with a monochromator with a Mo K α (λ = 0.71073 Å) incident beam. The charge-coupled device (CCD) data were integrated and scaled using the Bruker-SAINT software package, and the structure was solved and refined using SHEXTL V 6.12.¹ Hydrogen atoms were located in the calculated positions. The crystal data for 3-nitrobenzylidene methanamine: C₈H₈N₂O₂, Monoclinic, *P12₁/c1*, *Z* = 8, *a* = 7.4527(2), *b* = 18.3181(4), *c* = 11.3999(2) Å, α =90, β = 90.869, γ 90°, *V* = 1556.13 (6) Å³, μ = 0.103 mm⁻¹, ρ_{calcd} = 1.401 g/cm³, R₁ = 0.0379, and wR₂ = 0.1055 for 3852 unique reflections and 219 variables. The crystallographic data for methyl 3nitrobenzylidene methanamine are listed in Table S3, and Table S4 lists the selected bond distances and angles. CCDC-2023500 for 3-nitrobenzylidene methanamine contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

T 11 1		
Empirical formula	$C_8H_8N_2O_2$	
Formula weight	164.16	
Temperature (K)	100(2)	
Wavelength (Å)	0.71073	
Crystal system/space group	Monoclinic, P1 2 ₁ /c1	
Unit cell dimensions		
<i>a</i> (Å)	7.4527(2)	
b (Å)	18.3181(4)	
c (Å)	11.3999(2)	
	90	
$\alpha()$	20	
$eta(\degree)$	90.869 (1)	
$\gamma(^{\circ})$	90	
Volume (Å ³)	1556.13(6)	
Ζ	8	
Calculated density (g/cm^{-3})	1.401	
Absorption coefficient (mm ⁻¹)	0.103	
Reflections collected	12394	
Independent reflections [R(int)]	3091 [0.0379]	
Refinement method	Full-matrix	
	least-squares on F^2	
Data/restraints/parameters	3091/1/219	
Goodness-of-fit on F^2	1.014	

 Table S3. Crystal data for 3-nitrobenzylidene methanamine.

Table S4. Selected bond distances (Å) and bond angles (°) for 3-nitrobenzylidene methanamine.

Number	Object1	Object2	Length
1	N2	O2	1.227(1)
2	N2	01	1.233(1)
3	N2	C7	1.468(1)
4	C7	C6	1.387(2)
5	C6	H6	0.951
6	C6	C5	1.382(2)
7	C5	Н5	0.95
8	C5	C4	1.394(2)
9	C4	H4A	0.95
10	C4	C3	1.394(2)
11	C3	C8	1.400(2)
12	C8	H8	0.949
13	C4	H4A	0.95
14	C3	C2	1.476(2)
15	C2	H2A	0.949
16	C2	N1	1.261(1)
17	N1	C1	1.457(1)
18	N1	C1	1.457(1)

19	H1C	C1	0.98
20	H1A	C1	0.98
21	H1B	C1	0.98

Number	Atom1	Atom2	Atom3	Angle
1	O2	N2	01	123.29(9)
2	O2	N2	C7	118.75(9)
3	01	N2	C7	117.96(9)
4	C2	N1	C1	118.1(1)
5	H4A	C4	C3	119.7
6	H4A	C4	C5	119.7
7	C3	C4	C5	120.6(1)
8	H8	C8	C3	120.8
9	H8	C8	C7	120.7
10	C3	C8	C7	118.54(9)
11	N1	C2	H2A	119.2
12	N1	C2	C3	121.6(1)
13	H2A	C2	C3	119.2
14	C4	C3	C8	119.4(1)
15	C4	C3	C2	120.96(9)
16	C8	C3	C2	119.64(9)
17	N2	C7	C8	118.24(9)
18	N2	C7	C6	118.94(9)
19	C8	C7	C6	122.8(1)
20	C7	C6	H6	120.8
21	C7	C6	C5	118.3(1)
22	H6	C6	C5	120.9
23	C4	C5	C6	120.4(1)
24	C4	C5	H5	119.9
25	C6	C5	Н5	119.8
26	N1	C1	H1A	109.5
27	N1	C1	H1B	109.4
28	N1	C1	H1C	109.5
29	H1A	C1	H1B	109.5
30	H1A	C1	H1C	109.5
31	H1B	C1	H1C	109.5
32	C10	N3	C9	117.43(9)

33	O3	N4	O4	123.47(9)
34	03	N4	C15	118.40(9)
35	O4	N4	C15	118.13(9)
36	N4	C15	C16	117.99(9)
37	N4	C15	C14	118.83(9)
38	C16	C15	C14	123.2(1)
39	C12	C11	C16	119.4(1)
40	C12	C11	C10	119.7(1)
41	C16	C11	C10	120.8(1)
42	C11	C12	H12	119.6
43	C11	C12	C13	120.8(1)
44	H12	C12	C13	119.6
45	C15	C16	C11	118.4(1)
46	C15	C16	H16	120.8
47	C11	C16	H16	120.9
48	C15	C14	H14	121
49	C15	C14	C13	117.9(1)
50	H14	C14	C13	121
51	N3	C10	C11	122.6(1)
52	N3	C10	H10	118.7
53	C11	C10	H10	118.7
54	C12	C13	C14	120.3(1)
55	C12	C13	H13	119.8
56	C14	C13	H13	119.9
57	N3	С9	H9A	109.4
58	N3	С9	H9B	109.5
59	N3	C9	Н9С	109.5
60	H9A	С9	H9B	109.5
61	H9A	С9	Н9С	109.5
62	H9B	С9	Н9С	109.5

Figure S2. UV-visible spectra of MAPbI₃ film grown on a TiO_2/FTO substrate. The inset shows a Tauc plot of optical absorption coefficient versus photon energy for the MAPbI₃ film.

Characterization data for imines

(E)-N-benzylidenemethanamine (Entry 1).²

Yield/purity (1.06 g, 98 />99%). Elemental analysis (Found: C, 80.63; H, 7.61; N, 11.75. Calc. For C₈H₉N: C, 80.69; H, 7.54; N, 11.66%). λ_{max} (CHCl₃)/nm 246 (ϵ /dm³ mol⁻¹ cm⁻¹; 2.12x10⁴). ν_{max} (powder)/cm⁻¹ 1650s and 1580w, ν (C=C) and ν (C=N). δ_{H} (400 MHz; CDCl₃; Me₄Si) 3.50 (s, *J* = 1.6 Hz, 3H, N-C-*H*), 7.39 (m, *J* = 1.6 Hz, 1H, C3-*H*, C4-*H*, C5*H*, phenyl), 7.69 (m, J= 1.6 Hz, 1H, C2-*H*, C6-*H*, phenyl), 8.25 (s, J= 1.6 Hz, 1H, N=C-*H*). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 48.2 (N-CH₃), 127.9 (CH-3, CH-5, phenyl), 128.6 (CH-2, CH-6, phenyl), 130.5 (CH-4, phenyl), 136.2 (CH-1, phenyl), 162.6 (N=CH) (see Figure S3 and S4). MS (EI+) m/z = 118 (100), 119, (54), 120 (5).

(E)-N-(2-methoxybenzylidene)methanamine (Entry 2).³

Yield/purity (1.36 g, 98 />99%). Elemental analysis (Found: C, 72.46; H, 7.43; N, 9.39; O, 10.72. Calc. For C₉H₁₁NO: C, 72.43; H, 7.34; N, 9.39; O, 11.01 %). λ_{max} (CHCl₃)/nm 250 (ε /dm³ mol⁻¹ cm⁻¹; 1.65x10⁴) and λ_{max} (CHCl₃)/nm 305 (ε /dm³ mol⁻¹ cm⁻¹; 7.07x10³). ν_{max} (powder)/cm⁻¹ 1642m - 1599m and 1487m - 1464m v(C=C) and v(C=N). δ_{H} (400 MHz; CDCl₃; Me₄Si) 3.50 (s, J=1.6 Hz, 3H, N-CH₃), 3.83 (s, 3H, O-CH₃, phenyl), 6.8 (d, J= 8.4 Hz, 1H, C3-H, phenyl), 6.92 (t, J= 8.4 Hz, J = 1.6 Hz, 1H, C5-H, phenyl), 7.35 (t, J = 8.4 Hz, J = 1.6 Hz, 1H, C4-H, phenyl), 7.9 (d, J = 8.4 Hz, J = 1.6 Hz, 1H, C6-H, phenyl), 8.7 (s, J=1.6 Hz, 1H, N=C-H). δ_{C} (100 MHz; CDCl₃; Me₄Si) 48.5 (N-CH₃), 55.4 (N-OCH₃), 110.9 (CH-3, phenyl), 120.8 (CH-5, phenyl), 124.6 (C_{quart} -1, phenyl), 127.0 (CH-6, phenyl), 131.7 (CH-4, phenyl), 158.5 (N=CH) (see Figure S5 and S6). MS (EI+) m/z = 148 (100), 149 (22), 150 (4).

(E)-N-(4-chlorobenzylidene)methanamine (Entry 3).⁴

Yield/purity (1.40g, 98/>99%). Elemental analysis (Found: C, 62.55; H, 5.25; Cl, 23.08; N, 9.12. Calc. For C₈H₈CIN: C, 62.58; H, 5.25; Cl, 22.96; N, 9.21 %). λ_{max} (CHCl₃)/nm 254 (ε /dm³ mol⁻¹ cm⁻¹; 2.91x10⁴). v_{max} (powder)/cm⁻¹ 1650m - 1596m and 1488m - 1455m , v(C=C) and v(C=N). δ_{H} (400 MHz; CDCl₃; Me₄Si) 3.50 (s, J = 1.6 Hz, 3H, N-CH₃), 7.37 (d, J = 8.4 Hz, 2H, C3-H and C5-H, phenyl), 7.63 (d, J = 8.4 Hz, 2H, C2-H and C6-H, phenyl), 8.21 (s, J = 1.6 Hz, 1H, N=C-H). δ_{C} (100 MHz; CDCl₃; Me₄Si) 48.2 (N-CH₃), 128.9 (CH-3 and CH-5, phenyl), 129.1 (CH-2 and CH-6, phenyl), 134.7 (C_{quart} -1, phenyl), 136.2 (C_{quart} -4, phenyl), 161.2 (N=CH-Ph) (see Figure S7 and S8). MS (EI+) m/z = 152 (100), 153 (55), 154 (38), 155 (18), 157 (3).

Yield/purity (1.29g, 98/>99%). Elemental analysis (Found: C, 48.51; H, 4.07; N, 7.07; Br, 40.34. Calc. For C₈H₈BrN; C, 48.51; H, 4.07; N, 7.06; Br, 40.24 %). λ_{max} (CHCl₃)/nm 256 (ε /dm³ mol⁻¹ cm⁻¹; 2.36x10⁴). ν_{max} (powder)/cm⁻¹ 1650s - 1588s and 1487m - 1453m, ν (C=C) and ν (C=N). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 3.49 (s, J = 1.6 Hz, 3H, N-CH₃), 7.52 (d, J = 8.4 Hz, 2H, C2-*H* and C6-*H*, phenyl), 7.56 (d, J = 8.4 Hz, 2H, C3-*H* and C5-*H*, phenyl), 8.21 (s, J = 1.6 Hz, 1H, N=C-*H*). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 48.3 (N-CH₃), 124.9 (C_{quart} -4, phenyl), 129.4 (CH-2 and CH-6, phenyl), 131.9 (CH-3 and CH-5, phenyl), 135.2 (C_{quart} -1, phenyl), 161.3 (N=CH-Ph) (see Figure S9 and S10). MS (EI+) m/z = 196 (100), 197 (57), 198 (100), 199 (54), 200 (4).

(E)-N-(3-nitrobenzylidene)methanamine (Entry 5).⁶

Yield/purity (1.51 g, 97/>99%). mp 54.7 °C – 55 °C (CH₂Cl₂/hexane) lit. 55.1-55.8 °C. Elemental analysis (Found: C, 58.53; H, 4.91; N, 17.06; O, 19.49. Calc. For C₈H₈N₂O₂: C, 58.54; H, 4.92; N, 17.05; O, 19.48 %). λ_{max} (CHCl₃)/nm 241 (ϵ /dm³ mol⁻¹ cm⁻¹; 2.53x10⁴). v_{max} (powder)/cm⁻¹ 1648m and 1520s, v(C=C) and v(C=N). δ_{H} (400 MHz; CDCl₃; Me₄Si) 3.57 (s, J=1.6 Hz, 3H, N-CH₃), 7.58 (t, *J*= 8.0 Hz, 1H, C5-*H*, phenyl), 8.04 (d, *J* = 8.0 Hz, 1H, C4-*H*, phenyl), 8.24 (d, *J* = 8.0 Hz, 1H, C6-*H*, phenyl), 8.36 (s, *J*= 1.6 Hz, 1H, C2-*H*, phenyl), 8.53 (s, J=1.6 Hz, 1H, N=C-*H*). δ_{C} (100 MHz; CDCl₃; Me₄Si) 48.2 (N-CH₃), 122.5 (CH-2, phenyl) 124.9 (CH-4, phenyl), 129.6 (CH-5, phenyl), 133.4 (CH-6, phenyl), 137.9 (*C*_{quart}-1, phenyl), 148.5 (*C*-NO₂), 159.9 (N=CH-Ph). (see Figure S11 and S12). MS (EI+) *m/z* = 163 (100), 164 (75), 165 (7).

2-[(E)-(methylimino)methyl)]phenol (Entry 6).7

Yield/purity (1.20 g, 98/>99%). Elemental analysis (Found: C, 71.09; H, 6.71; N, 10.36; O, 11.84. Calc. For C₈H₉NO: C, 71.14; H, 6.68; N, 10.41; O, 11.76%). λ_{max} (CHCl₃)/nm 255 (ε /dm³ mol⁻¹ cm⁻¹; 9.0x10³) and λ_{max} (CHCl₃)/nm 315 (ε /dm³ mol⁻¹ cm⁻¹; 3.47x10³). ν_{max} (powder)/cm⁻¹ 1635s - 1583m and 1495m - 1451m, v(C=C) and v(C=N). 3.45 (s, J=1.6 Hz, 3H, N-CH₃), 6.85 (t, *J*=7.6 Hz, 1H, C5-*H*, phenyl), 6.96 (d, *J* = 8.0 Hz, 1H, C3-*H*, phenyl), 7.21 (d, *J* = 7.6 Hz, 1H, C6-*H*, phenyl), 7.27 (t, *J* = 8.0 Hz, 1H, C4-*H*, phenyl), 8.30 (s, J=1.6 Hz, 1H, N=C-*H*). 13.5 (s, -OH, exchangeable signal) δ_{C} (100 MHz;

CDCl₃; Me₄Si) 46.0 (N-CH₃), 117.0 (CH-3, phenyl) 118.5 (CH-5, phenyl), 118.9 (CH-1, phenyl), 131.1 (CH-6, phenyl), 132.1 (CH-4, phenyl), 161.2 (C-OH, phenyl), 166.2 (N=CH-Ph). (see Figure S13 and S14). MS (EI+) m/z = 134 (89), 135 (100), 136 (9).

(E)-N-((E)-3-phenylallylidene)methanamine (Entry 7).

Yield/purity (1.32 g, 98/>99%). Elemental analysis (Found: C, 82.72; H, 7.64; N, 9.65. Calc. For C₁₀H₁₁N: C, 82.66; H, 7.72; N, 9.65%). λ_{max} (CHCl₃)/nm 281 (ε /dm³ mol⁻¹ cm⁻¹; 2.67x10⁴). v_{max} (powder)/cm⁻¹ 1637s and 1448m, v(C=C) and v(C=N). δ_{H} (500 MHz; CDCl₃; Me₄Si) 3.41 (s, 3H, N-C-*H*), 6.87 (dd, *J* = 16 Hz, 1H, Ph-CH=CH_b-CH=N-CH₃), 6.92 (d, *J* = 16 Hz, 1H, Ph-CH_c=CH-CH=N-CH₃), 7.30 (t, *J* = 7.5 Hz, 1H, C4-*H*, phenyl), 7.35 (t, *J* = 7.5 Hz, 2H, C3-*H* and C5-*H*, phenyl), 7.46 (d, *J* = 7.5 Hz, 2H, C2-*H* and C6-*H*, phenyl), 8.0 (dd, *J* = 7.5 Hz and *J* = 1.5 Hz, 1H, Ph-CH=CH-CH_a=N-CH₃). δ_{C} (100 MHz; CDCl₃; Me₄Si) 48.2 (N-CH₃), 127.1 (Ph-CH=CH_b-CH=N-CH₃, phenyl), 128.1 (CH-2 and CH-6, phenyl), 128.7 (CH-3 and CH-5, phenyl), 129.0 (CH-4, phenyl), 135.7 (CH-1, phenyl), 141.0 (Ph-CH_c=CH-CH=N-CH₃), 164.0 (Ph-CH=CH-CH_a=N-CH₃). (see Figure S15 and S16). MS (EI+) *m/z* = 144 (100), 145 (22), 146 (2).

(E)-N-((E)-3-(2-methoxyphenyl)allylidene)methanamine (Entry 8).

ield/purity (1.62 g, 98/>99%). Elemental analysis (Found: C, 75.40; H, 7.48; N, 7.99; O, 9.13. Calc. For C₁₁H₁₃NO: C, 75.49; H, 7.46; N, 7.99; O, 9.04 %). λ_{max}(CHCl₃)/nm 277

(ε /dm³ mol⁻¹ cm⁻¹; 2.19x10⁴) and λ_{max} (CHCl₃)/nm 318 (ε /dm³ mol⁻¹ cm⁻¹; 1.32x10⁴). v_{max} (powder)/cm⁻¹ 1634m and 1487m, v(C=C) and v(C=N). δ_{H} (500 MHz; CDCl₃; Me₄Si) 3.40 (s, 3H, N-C-*H*), 3.85 (s, 3H, C2-OC*H*₃, phenyl), 6.89 (t, *J*= 7.5 Hz, 1H, C5-*H*, phenyl), 6.91 (dd, *J*= 16 Hz, 1H, Ph-CH=C*H*_b-CH=N-CH₃), 6.94 (t, *J*= 7.5 Hz, 1H, C4-*H*, phenyl), 7.27 (d, *J*= 16 Hz, 1H, Ph-CH=CH-CH=N-CH₃), 7.29 (d, *J*= 7.5 Hz, 1H, C3-*H*, phenyl), 7.50 (d, *J* = 7.5 Hz, 1H, C3-*H*, phenyl), 8.02 (dd, *J* = 7.5 Hz and *J* = 1.5 Hz, 1H, Ph-CH=CH-CH_a=N-CH₃), δ_{C} (100 MHz; CDCl₃; Me₄Si) 48.1 (N-CH₃), 55.4 (C2-OCH₃, phenyl), 110.9 (*C*H-3, phenyl), 120.7 (Ph-CH=*C*H_b-CH=N-CH₃, phenyl), 124.7 (*C*H-5, phenyl), 127.4 (*C*H-1, phenyl), 128.7 (*C*H-4, phenyl), 130.2 (*C*H-6, phenyl), 136.2 (Ph- *C*H_c=CH-CH=N-CH₃), 157.2 (*C*H-2, phenyl), 164.9 (Ph-CH=CH-CH_a=N-CH₃). (see Figure S17 and S18). MS (EI+) *m/z* = 174 (100), 175 (35), 176 (5). Figure S3 ¹H NMR Spectrum of Entry 1

Figure S4 ¹³C NMR Spectrum of Entry 1

Figure S5 ¹H NMR Spectrum of Entry 2

Figure S6 ¹³C NMR Spectrum of Entry 2

Figure S7 ¹H NMR Spectrum of Entry 3

Figure S8 ¹³C NMR Spectrum of Entry 3

Figure S10 ¹³C NMR Spectrum of Entry 4

Figure S11 ¹H NMR Spectrum of Entry 5

Figure S12 ¹³C NMR Spectrum of Entry 5

Figure S13 ¹H NMR Spectrum of Entry 6

Figure S14 ¹³C NMR Spectrum of Entry 6

Figure S16 ¹³C NMR Spectrum of Entry 7

Figure S18 ¹³C NMR Spectrum of Entry 8

Figure S19 ¹H NMR Spectrum of MMA solution (33wt% in EtOH) and transcinnamaldehyde.

Figure S20 ¹³C NMR Spectrum of MMA solution (33wt% in EtOH) and transcinnamaldehyde.

References

- G. M. Sheldrick, SHELXTL/PC Version 6.12 for Windows XP, Bruker AXS Inc., Madison, WI, 2001.
- W. Schilf / Journal of Molecular Structure 689 (2004) 245–249, L. Paquin, J. Hamelin,
 F. Texier-Boullet, *Synthesis*, 2006, 1652-1656, Compare to a commercial product: CAS number 622-29-7.
- L. Piazzi et al. / Bioorg. Med. Chem. 15 (2007) 575–585. Compare to a commercial product: CAS number. 1125-90-2.
- L. Paquin, J. Hamelin, F. Texier-Boullet, *Synthesis*, 2006, 1652-1656. L. Piazzi et al. / Bioorg. Med. Chem. 15 (2007) 575–585., Jennings, W. B.; Wilson, V. E.; Boyd, D. R.; Coulter, P. B., *Organic Magnetic Resonance* 1983, 21 (4), 279-286. Compare to a commercial product: CAS number. 13114-22-2.
- The Journal of Organic Chemistry 2002, 67 (23), 8191-8196. Jennings, W. B.; Wilson, V. E.; Boyd, D. R.; Coulter, P. B., Organic Magnetic Resonance 1983, 21 (4), 279-286.
- Connolly, T. J.; Constantinescu, A.; Lane, T. S.; Matchett, M.; McGarry, P.; Paperna, M., Organic Process Research & Development 2005, 9 (6), 837-842. Compare to a commercial product: CAS number. 121004-44-2.
- W. Schilf / Journal of Molecular Structure 689 (2004) 245–249, *Russian Journal of Coordination Chemistry* 2009, 35 (2), 120-127. Compare to a commercial product: CAS number. 107910-69-0.
- Hauser, C. R.; Manyik, R. M.; Brasen, W. R.; Bayless, P. L., The Journal of Organic Chemistry 1955, 20 (8), 1119-1128. Winn, M.; Dunnigan, D. A.; Zaugg, H. E., The Journal of Organic Chemistry 1968, 33 (6), 2388-2392., Jennings, W. B.; Wilson, V. E.; Boyd, D. R.; Coulter, P. B., *Organic Magnetic Resonance* 1983, *21* (4), 279-286. Compare to a commercial product: CAS number. 13280-16-5.