
Supporting Information

Reaction induced robust Pd_xBi_y/SiC catalyst for the gas phase oxidation of monopolistic alcohols

Pengwei Wang*, Lijun Xu, Jianming Zhu, Kunqi Gao, Zhang Yan; Jifen Wang*

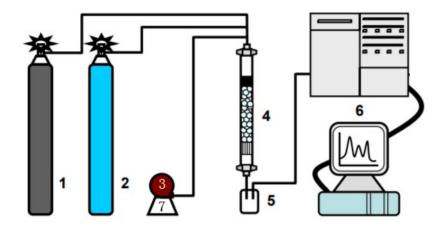
E-mail: pwwang@sspu.edu.cn; wangjifen@sspu.edu.cn.

The calculation method of benzyl alcohol conversion and benzaldehyde selectivity

 $fi = \frac{m_i}{m_D} * \frac{A_D}{A_i}$

 m_i : the weight of the substance; m_D : the weight of internal material DMSO; A_D : the peak area of DMSO in gas chromatography (GC); A_i : the peak area of the substances in GC.

$$Conver. = 1 - \frac{m_D' * f_P * \frac{A_P'}{A_D}}{m_P}$$


benzyl alcohol conversion:

 $m_{D}^{'}$: the weight of DMSO added into the system; f_{P} : correction factor of benzyl alcohol; $A_{P}^{'}$: the peak area of benzyl alcohol after reaction; $A_{D}^{'}$: the peak area of DMSO added into the system; m_{P} : the weight of benzyl alcohol added before the reaction

$$Sel. = \frac{m_D^{'} * f_t * \frac{A_t}{A_D^{'}}}{m_P * Conver.}$$

Benzyl aldehyde selectivity:

 f_t : correction factor of benzaldehyde; A_t : the peak area of benzaldehyde after reaction

Scheme S1. The fix-bed reactor used in alcohol oxidation

(1. N₂ cylinder; 2. O₂ cylinder; 3. Pump; 4. Reactor tube; 5. Condensator; 6. GC; 7. alcohol)

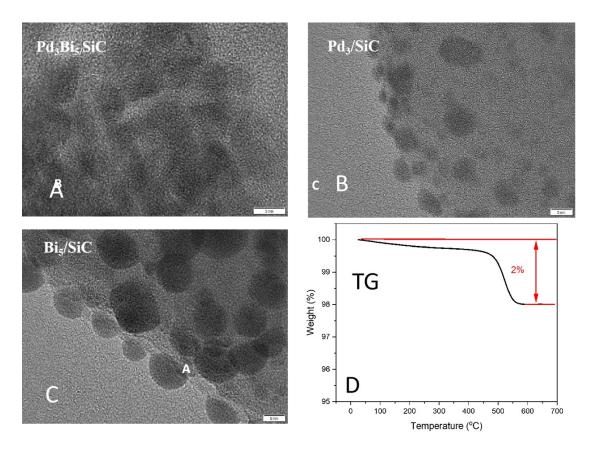


Fig. S1. TEM images of Pd₃Bi₅/SiC fresh (A), used Pd₃/SiC (B), used Bi₅/SiC catalysts (C) and TG curve of used Pd₃Bi₅/SiC (D)

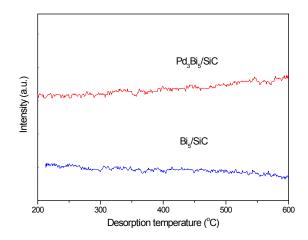


Fig. S2. O₂-TPD profiles of the catalysts

Alcohol	Temperatur	Conversion	Selectivity
	e	(%)	(%)
	(°C)		
1-phenylethanol	280	75	98
2-phenylethanol	300	55	97
methanol	280	91	92
ethanol	290	88	93

Table S1. Catalytic performance of Pd_3Bi_5/SiC

Catalyst	V _{total} ^b	D_{Pd}^{c}	V _{Pd-particle}	d Amount of	$S_{Pd-particle}^{e}$	S _{total}	Amount of	Conv. ^f	N ^g	TOF
	(×10 ⁻⁴ , cm ³)	(nm)	(nm ³)	Pd Particles $(\times 10^{14})$	(nm ²)	(cm ²)	Surface Ag Atoms ^e (×10 ¹⁸)	(%)	(×10 ²²)	(h ⁻¹)
Pd ₃ Bi ₅ /SiC ^h	7.5	5.8	51	147	52.8	7761	11.4	12	10.08	8842
Pd ₃ Bi ₅ /SiC ⁱ	7.5	5.8	51	147	52.8	7761	11.4	3	2.52	2210
Pd ₃ /SiC ^h	7.5	5.5	43	174	47.5	8265	12.2	0.3	0.252	206
Pd ₃ /SiC ⁱ	7.5	5.5	43	174	47.5	8265	12.2	0.1	0.080	65

Table S2. The turnover frequencies (TOFs) of benzyl alcohol oxidation over the catalysts based on Pd NPs^a.

^{*a*}For each catalyst, 0.3 g was used in testing experiments; ^{*b*}The total volume of Pd (V_{total}) is calculated as: Pd mass (0.3 g × Pd-loading (wt%)) is divided by the silver density (12 g/cm³); ^{*c*}The particle size is estimated from TEM images; ^{*d*}The Pd NPs are assumed as hemisphere, and the volume of single Pd particle is $\pi D_{Pd}^{3}/12$, and the surface area is $\pi D_{Pd}^{2}/2$; ^{*e*}The distance between the adjacent Pd atoms is 0.26 nm, and one Pd atom occupies the surface area of 0.0676 (0.26 × 0.26 = 0.0676) nm²; ^{*f*}The weight hourly space velocity (WHSV) = 500 h⁻¹, and 150 g benzyl alcohol was fed into the reactor; ^{*g*}Amount of converted benzyl alcohol (Take the converted benzyl alcohol over the catalyst Pd₃Bi₅/SiC as example: the converted benzyl alcohol in one hour is 18 g (150 × 0.12 = 18 g), and the converted amount of benzyl alcohol molecule is 3.36 × 10²² (18 (g) ÷ 108 (g/mol) = 0.1668 mol; 0.1668 × 6.02 × 10²³ = 10.08 × 10²²)); ^{*h*}260 °C; ^{*i*}240 °C.