## **Supporting Information**

## Natural iron embedded hierarchically porous carbon with thin-thickness and high-efficiency microwave absorption properties

Can Zhang,<sup>1a</sup> Kuihu Zhao,<sup>1a</sup> Xueai Li,<sup>\*a</sup> Wenqi Dong,<sup>a</sup> Sufeng Wang,<sup>a</sup> Yunchun Zhou<sup>b</sup> and Haiyan Wang<sup>\*a</sup>

<sup>a</sup> Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of heavy metal deep-remediation in water and resource reuse, College of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P.R. China

<sup>b</sup> National Analytical Research Center of Electrochemical and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China

<sup>1</sup> These authors contributed to the work equally and should be regarded as co-first authors.

\*Corresponding authors. E-mail address: lixueai@ysu.edu.cn(X. Li), hywang@ysu.edu.cn(H. Wang)



Fig. S1 TG curve of raw BSES.



Fig. S2 FESEM images of (a) HPC-0.5, and (b) HPC-2.



Fig. S3. (a) Low-magnification, (b) high-magnification TEM images, and (c) HRTEM image of HPC-1.



Fig. S4 XRD patterns of (a) raw BSES, and (b) C-700, respectively.



Fig. S5. The data of ICP-AES measurement of raw BSES.



**Fig. S6** (a) Raman spectrum, (b) Nitrogen adsorption–desorption isotherm, and (c) pore size distribution of C-700.

| Sample  | S <sub>BET</sub><br>(m²/g) | $S_{Micro}$ $(m^{2}/g)$ | $S_{External}$ $(m^2/g)$ | $S_{Micro}/S_{BET}$ (%) | V <sub>Total</sub><br>(cm <sup>3</sup> /g) | V <sub>Micro</sub><br>(cm <sup>3</sup> /g) | V <sub>Micro</sub> /V <sub>Total</sub><br>(%) |
|---------|----------------------------|-------------------------|--------------------------|-------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------|
| C700    | 73.43                      | 19.47                   | 53.96                    | 26.52                   | 0.15                                       | 0.01                                       | 6.67                                          |
| HPC-0.5 | 553.60                     | 459.89                  | 93.71                    | 83.07                   | 0.34                                       | 0.24                                       | 70.59                                         |
| HPC-1   | 1192.00                    | 972.50                  | 219.50                   | 81.59                   | 0.71                                       | 0.52                                       | 73.24                                         |
| HPC-2   | 1886.16                    | 1231.82                 | 654.34                   | 65.31                   | 0.92                                       | 0.49                                       | 53.26                                         |

Table S1. The pore structure parameters of C700 and HPCs.



**Fig. S7** Frequency dependence of (a) complex permittivity, (b) complex permeability, (c) threedimensional map of RL, and (d) attenuation factor for C-700.

**Table S2.** Comparison of the microwave absorption properties of HPC-1 with the recently reported bioderived absorbers.

|                                              | Minimum RL    |                         | Effective absorption bandwidth |                         |        |
|----------------------------------------------|---------------|-------------------------|--------------------------------|-------------------------|--------|
| Microwave absorber                           | Value<br>(dB) | f <sub>m</sub><br>(GHz) | f <sub>e</sub> /GHz (t/mm)     | Filler loading<br>(wt%) | Ref.   |
| Porous carbon                                | -42.4         | 8.88                    | 2.24 (1.50)                    | 70                      | 1      |
| 3D porous carbon                             | -44.6         | 9.15                    | 2.20 (1.68)                    | 30                      | 2      |
| Porous rGOs                                  | -51.7         | 9.80                    | 3.90 (3.50)                    | 15                      | 3      |
| Carbonaceous photonic crystals               | -57.9         | 7.30                    | 2.10 (2.50)                    | 30                      | 4      |
| Porous carbon/Fe <sub>3</sub> O <sub>4</sub> | -43.6         | 7.10                    | 3.30 (4.70)                    | 30                      | 5      |
| Porous carbon/Fe <sub>3</sub> O <sub>4</sub> | -39.5         | 6.40                    | 4.00 (1.60)                    | 50                      | 6      |
| Porous carbon/NiO                            | -33.8         | 16.40                   | 2.50 (6.00)                    | 30                      | 7      |
| AC/Ni(OH) <sub>2</sub>                       | -23.0         | 14.50                   | 2.00 (5.50)                    | 50                      | 8      |
| Porous carbon/MnO                            | -51.6         | 10.4                    | 3.00 (2.47)                    | 30                      | 9      |
| HPC-1 (BSES)                                 | -53.6         | 10.40                   | 4.00 (1.43)                    | 20                      | Herein |

## References

1 X. Qiu, L. X. Wang, H. L. Zhu, Y. K. Guan and Q. T. Zhang, *Nanoscale*, 2017, 9, 7408.

2 S. K. Singh, H. Prakash, M. J. Akhtar and K. K. Kar, *ACS Sustainable Chem. Eng.*, 2018, **6**, 5381–5393.

3 D. Q. Zhang, T. T. Liu, J. Y. Cheng, J. X. Chai, X. Y. Yang, H. Wang, G. P. Zheng and M. S. Cao,

Nanotechnology, 2019, 30, 445708

4 Y. Zhang, B. C. Wang, A. M. Nie, C. P. Mu, J. Y. Xiang, F. S. Wen and Z. Y. Liu, *J. Mater. Sci.*, 2019, **54**, 14343–14353.

5 G. J. Gou, F. B. Meng, H. G. Wang, M. Jiang, W. Wei and Z. W. Zhou, *Nano Res.*, 2019, **12**, 1423–1429.

6 L. H. Wang, H. T. Guan, J. Q. Hu, Q. Huang, C. J. Dong, W. Qian and Y. D. Wang, *J. Alloy. Compd.*, 2019, 803, 1119-1126.

7 H. Y. Wang, Y. L. Zhang, Q. Y. Wang, C. W. Jia, P. Cai, G. Chen, C. J. Dong and H. T. Guan, *RSC Adv.*, 2019, **9**, 9126–9135.

8 H. T. Guan, H. Y. Wang, Y. L. Zhang, C. J. Dong, G. Chen, Y. D. Wang and J. B. Xie, *Appl. Surf. Sci.*, 2018, 447, 261–268.

9 S. Dong, W. K. Tang, P. T. Hu, X. G. Zhao, X. H. Zhang, J. C. Han and P. Hu, *ACS Sustainable Chem. Eng.*, 2019, 7, 11795-11805.