Electronic Supplementary Information

Dual Enhanced Anti-Bacterial Strategy Based on High Chlorin e6 Loaded

Polyethyleneimine Functionalized Graphene

Jiangxia Wang,^a Yuting Yang,^a Yuanliang Xu,^b Lifeng Zhao,^a Lu Wang,^a Zhengzhi Yin,^c Huiming Li,^{*b} Huan Tan^{*a} and Kunping Liu^{*a}

^aKey Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China

^bCollege of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China

^cCollege of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China

Fig. S1 UV-Vis (A) spectrum of EGO, pure graphene and PEI-G, XRD (B), Raman (C) spectrum of Graphite, EGO, pure graphene and PEI-G, FT-IR (D) spectrum of EGO, pure graphene, PEI-G, PEI-G@Ce6 and Ce6.

Fig. S2 SEM (A) and TEM (B) images of PEI-G. Inset of B was the size distribution of PEI-G.

Fig. S3 UV-Vis spectrum of (A) Ce6, (B) PEI-G@Ce6 in photostability and (C) Ce6, (D) PEI-

G@Ce6 incubated with DPBF for singlet oxygen generation

Fig. S4 Haematoxylin and eosin stain images of the major organs of mice in PEI-G@Ce6 group (heart, liver, spleen, lung and kidney)

Nanomaterials	Ce6 loading capacity (%)	References
Magnetic polydopamine nanoparticles	18.03%	1
Silica nanoparticles	7.80%	2
Poly (dopamine) nanospheres	20.44%	3
PEGylated graphene oxide	15.00%	4
Black Phosphorus Nanosheets	12.80%	5
Pd nanosheets	5.25%	6
PEI-G	32.91%	This work

 Table S1 Comparation of Ce6 loading capacity with other nanomaterials reported in published articles

Table S2 Wound healing activity of PEI-G, Ce6 and PEI-G@Ce6 in mice

Group —	Wound size (mm) and Percentage of wound healing at				
	1 th day	7 th day	9 th day	13 th day	
Control	100.00 ± 0.00	89.73±1.8	86.26±2.3	69.74±2.5	
	0%	10.27%	13.74%	30.26%	
PEI-G	100.00 ± 0.00	89.72±0.9	83.95±1.5	60.58 ± 2.0	
	0%	10.28%	16.05%	39.42%	
Ce6+	100.00 ± 0.00	87.25±2.2	80.27±2.6	49.95±2.8	
	0%	12.75%	19.73%	50.46%	
PEI-G@Ce6+	100.00 ± 0.00	56.25±2.6	53.22±1.8	10.35±1.7	
	0%	43.75%	46.78%	89.65%	

References

- 1. C. Lu, F. Sun, Y. Liu, Y. Xiao, Y. Qiu, H. Mu and J. Duan, *Carbohydrate Polymers*, 2019, **218**, 289-298.
- 2. J.-f. Lin, J. Li, A. Gopal, T. Munshi, Y.-w. Chu, J.-x. Wang, T.-t. Liu, B. Shi, X. Chen and L. Yan, *Chemical Communications*, 2019, **55**, 2656-2659.
- 3. D. Zhang, M. Wu, Y. Zeng, L. Wu, Q. Wang, X. Han, X. Liu and J. Liu, *ACS applied materials & interfaces*, 2015, **7**, 8176-8187.
- 4. B. Tian, C. Wang, S. Zhang, L. Feng and Z. Liu, ACS Nano, 2011, 5, 7000-7009.
- 5. X. Yang, D. Wang, Y. Shi, J. Zou, Q. Zhao, Q. Zhang, W. Huang, J. Shao, X. Xie and X. Dong, *ACS applied materials & interfaces*, 2018, **10**, 12431-12440.
- 6. Z. Zhao, S. Shi, Y. Huang, S. Tang and X. Chen, *ACS applied materials & interfaces*, 2014, 6, 8878-8885.