Achieving efficient and large-scale preparation of mesophase- Nylon

11 film by random copolymerization of Nylon 11 and Nylon 611

Lei Huang^a, Dandan Yuan^a, Yunyun Yang^a a and Xufu Cai *^a

a: College of Polymer Science and Materials, The State Key Laboratory of Polymer Materials Engineering, Sichuan

University, Chengdu 610065, China

*: corresponding authors, Prof. Xufu Cai, email:caixf2008@scu.edu.cn;

1. Thermal Data for Compressed (C) and Compressed and Annealed (CA) Nylon Films Table S1 Thermal Data for C (left) and CA (right) Nylon Films

		. ,						
C samples	ΔH	Tm	Tg	Crystallinity	CA	$\Delta {\sf H}$	Tm	Crystallinity
	(J g-1)	(°C)	(°C)	(wt.%) ^a	samples	(J g-1)	(°C)	(wt.%) ^a
PA11	38.15	183.7	51.12	15.64	PA11	39.88	183.9	16.34
coPA-1	27.25	173.2	50.25	11.12	coPA-1	30.76	172.6	12.55
coPA-2	27.14	165.4	47.06	11.03	coPA-2	29.48	164.8	11.98
coPA-3	27.85	149.9	44.59	11.26	coPA-3	31.16	149.0	11.26
coPA-4	30.05	146.1	44.23	12.09	coPA-4	30.21	145.3	12.15
coPA-5	32.10	147.6	38.52	12.85	coPA-5	31.82	146.6	12.74

, ,0

2. Infrared spectrum and ¹H NMR spectrum of 611 salt

Fig. S1 Infrared spectrum (left) and ¹H NMR spectrum (right) of 611 salt

For infrared spectrum: 3446 cm⁻¹ (N-H stretching), 2931 and 2858 cm⁻¹ (-CH2- stretching), 1640 cm-1 (the

characteristic peak of COO- and $^{NH_{3}^{+}}$), 1539 cm⁻¹ (N-H bending), 1469 and 1404 cm⁻¹ (COO- stretching). For ¹H NMR spectrum: δ 3.73(4H,H-a), δ 1.43(4H,H-b), δ 1.31(22H,H-c).

	T2%	T5%
Samples	(°C)	(°C)
coPA-1	390	414
coPA-2	389	412
coPA-3	393	414
coPA-4	395	414
coPA-5	381	404

Table S2Main date Collected from TG curves

3. Thermogravimetric curves of nylon samples

Fig. S2 Thermogravimetric curves of nylon samples

All the nylon copolymers had excellent thermal stability, and the Tm of all nylon copolymers was lower than 180 °C, indicating the nylon copolymer is suitable for hot-processing.

4. DSC heating runs at 10 °C /min, 20 °C /min and 40 °C /min of PA11

Fig. S3 DSC heating runs at 10 $^{\circ}\text{C}$ /min, 20 $^{\circ}\text{C}$ /min and 40 $^{\circ}\text{C}$ /min of PA11

5. Non-isothermal Crystallization Kinetic Analysis

Fig. S4 the relationship of crystallization peak temperature with cooling rate for nylon samples

The crystallization peak temperature of all nylon copolymers decreased with the increase of cooling rate, it was attributed to the thermal hysteresis at the cooling process. Moreover, increasing the chemical heterogeneity, the hysteresis was more obvious.

Fig. S5 The ln[-ln(1-X(t))] relating to ln(t) for nonisothermal crystallization process

Samples	Φ (°C/min)	n	Average of n	Zt	Zc	R2
PA11	5	3.079	3.711	1.087	1.017	0.9956
	10	3.909		2.749	1.106	0.9708
	15	3.917		5.240	1.117	0.9673
	20	3.938		8.864	1.115	0.9723
coPA-1	5	3.237	3.228	0.299	0.785	0.9921
	10	2.950		1.124	1.012	0.9899
	15	3.403		1.864	1.042	0.9964
	20	3.323		3.376	1.063	0.9952
coPA-2	5	3.691	3.306	0.079	0.602	0.9899
	10	2.774		0.766	0.974	0.9865
	15	3.473		1.443	1.025	0.9987
	20	3.286		2.322	1.043	0.9966
coPA-3	5	3.074	3.130	0.111	0.644	0.9891
	10	3.344		0.328	0.894	0.9901
	15	2.845		0.990	0.999	0.9928
	20	3.258		1.067	1.003	0.9954
coPA-4	5	2.842	2.853	0.087	0.614	0.9908
	10	2.952		0.213	0.857	0.9898
	15	2.919		0.404	0.941	0.9941
	20	2.697		0.628	0.977	0.9954
coPA-5	5	2.687	2.578	0.024	0.475	0.9812
	10	2.648		0.070	0.767	0.9930
	15	2.628		0.178	0.891	0.9928
	20	2.349		0.741	0.985	0.9870

Table S3 The kinetic parameters relating to non-isothermal crystallization of nylon samples