Supporting Information

Ionothermal Synthesis of Photochromic Inorganic-Organic Complex for Colorimetric and Portable UV Index Indication and UVB Detection

Junbiao Wu,* Luqi Lou, Yide Han, Yan Xu, Xia Zhang, Zhuopeng Wang

Department of Chemistry, College of Science, Northeastern University, Shenyang, Liaoning 110819, P. R. China. E-mail: wujunbiao@mail.neu.edu.cn;

Empirical formula	$C_{40}H_{28}Ga_2N_6O_{20}$		
Formula weight	1052.12		
Temperature	293 К		
Wavelength(Å)	0.71073		
Crystal system, space group	Monoclinic, C2/c		
Unit cell dimensions			
<i>a</i> (Å)	26.47(5)		
b (Å)	10.667(19)		
c (Å)	17.28 (3)		
$\alpha(\deg)$	90		
β (deg)	125.389(18)		
γ (deg)	90		
Volume(Å ³)	3976(13)		
Z, calculated density(mg m ⁻³)	4, 1.758		
Absorption coefficient(mm ⁻¹)	1.453		
F(000)	2128		
Crystal size(mm ³)	0.20 imes 0.20 imes 0.20		
θ range(°) for data collection	1.888-27.600		
Limiting indices	$-34 \le h \le 34, -13 \le k \le 13, -22 \le l \le 22$		
Reflections collected/unique	17943/4593, [<i>R</i> (int) = 0.1313]		
Completeness to θ (%)	25.242, 99.8		
Absorption correction	semi-empirical from equivalents		
Refinement method	full-matrix least-squares on F^2		
Data/restraints/parameters	4593/0/307		
Goodness-of-fit on F^2	1.085		
Final <i>R</i> indices $[I > 2 \sigma(I)]$	$R_1 = 0.0890, wR_2 = 0.2226$		
R indices (all data)	$R_1 = 0.1349, wR_2 = 0.2599$		
Largest diff. peak and hole $(eÅ^{-3})$	1.406 and -1.147		

Table S1. Crystal data and structure refinement for NEU-20^{*a*}

 ${}^{a}R_{1} = \sum (\Delta F / \sum (F_{o})), wR_{2} = (\sum [w(F_{o}^{2} - F_{c}^{2})]) / \sum [w(F_{o}^{2})^{2}]^{1/2} \text{ and } w = 1 / [\sigma^{2}(F_{o}^{2}) + (0.1151P)^{2} + 7.0278P] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1B)O(7)#1	0.86	2.18	2.880(9)	138.7
N(1)-H(1B)O(9)#1	0.86	2.11	2.834(10)	141.4
C(1)-H(1A)O(3)	0.93	2.42	3.348(12)	173.9
C(3)-H(3A)O(5)#2	0.93	2.46	3.390(11)	174.2
C(6)-H(6A)O(4)	0.93	2.52	3.158(11)	126.3
C(7)-H(7A)O(3)	0.93	2.60	3.451(10)	151.5
C(8)-H(8A)O(5)#2	0.93	2.59	3.456(11)	155.0
C(8)-H(8A)O(6)#2	0.93	2.47	3.096(10)	124.7
C(9)-H(9A)O(6)#2	0.93	2.63	3.176(11)	118.3
C(14)-H(14A)O(7)#2	0.93	2.61	3.503(11)	161.4
C(15)-H(15A)O(8)#3	0.93	2.54	3.209(11)	129.4

Table S2. Hydrogen bonds for NEU20 [A and deg.]

 Table S3 Summary of photoresponsive rate in this work compared with literatures

Entry	Sample name	Light suorce	Changed	$k_{\rm obs}({\rm s}^{-1})$	Ref
			color		
1	[Zn ₂ (Bpy)(CTA) ₄]	Xe lamp	colorless to purple	1.140×10-3	1
2	[H ₂ CPBPY]·[H ₂ BTEC]	Xe lamp	pale yellow to green	5.943×10 ⁻⁴	2
3	[Cd(CPBPY)(m-BDC) ·H ₂ O	Xe lamp	yellow to blue	1.2×10-3	3
4	$\{[Zn_3(Cebpy)_2(Hbtc)(H_2btc)_2(OH)_2]\cdot 4H_2O\}_n$	Xe lamp	pale yellow to dark blue	4.29×10 ⁻³	4
5	$ C_{10}H_{10}N_2 [GaF(C_2O_4)_2]$	UV light or visible light	colorless to purple	3.86×10 ⁻³	5
6	NEU20	UV light	colorless to purple	0.195	This work

Figure S1. Thermal ellipsoids of NEU20 given at 50% probability, showing the atomic labelling scheme.

Figure S2. *In-situ* temperature dependent PXRD patterns of NEU-20 calcined at different temperatures.

Figure S3. The thermal gravimetric curve of NEU-20.

Figure S4. Experimental of NEU20, NEU20-P and NEU20-H and calculated powder XRD patterns of NEU20.

Figure S5. IR curves of NEU20, NEU20-P and NEU20-H.

Figure S6. Plot of $(\alpha hv)^2$ as a function of hv for the bandgap energy of **NEU20**.

Figure S7. UVA doses detected plot with NEU20, following the second-order nonlinear relationship y=-2.645e⁻⁶x²-0.00311x+1, R²=0.996.

Figure S8. The stability test of a) NEU20 PAPER and b) NEU20/PVDF under ambient conditions for 90 days.

ondition 30°C for h in air. 30°C in air. 20°C 0°C for 2 ours.	1 2 3 4
30°C for h in air. 30°C in air. 20°C 0°C for 2 ours.	1 2 3 4
h in air. 30°C in air. 20°C 0°C for 2 ours.	2 3 4
30°C in air. 20°C 0°C for 2 ours.	2 3 4
20°C 0°C for 2 ours.	3
20°C 0°C for 2 ours.	3
0°C for 2 ours.	4
0°C for 2 ours.	4
ours.	
10°C for	5
0 min.	
30°C for 1	6
in air.	
40°C for 4	7
6 h .	
45°C for 2	8
ours in air.	
0°C for 20	9
nin in air.	
30°C in air	10
20°C for	11
20 min in	
air.	
U°C for 20	12
nn.	
2000	10
20°C IOP	13
11.	14
	14
20°C for	15
h in air	15
411.	
	16
20°C for	
20°C for	10
20°C for ew	
	20°C for 20 min in air. 0°C for 20 iin. 20°C for h. 20°C for h in air. 20°C for

 Table S4 Summary of photochromic performances in this work compared with

 literatures

	BDC)(H ₂ O)]·H ₂ O					pure O_2 or	
						air, return	
						slowly.	
18	$[Zn(L_1)(L_3)_{0.5}] \cdot H_2O$	Xe lamp	250 W	20s	pale yellow to	130 °C for 5	18
					pale green	min.	
19	NTHU-9	X-rays	-	-	orange to slate	200°C for	19
					gray	12h in air.	
20	[H ₂ (Bpy)][H ₃ (Pma)]	Xe lamp	300 W	-	yellow to	$80\ ^\circ C$ for 3	20
	2				grayish purple	min.	
21	[Cd ₂ (ic)(mc)(4,4'-	light with	-	-	yellow to blue	80°C for	21
	bipy) ₃] _n ·4nH ₂ O	λ<460 nm				several	
						hours.	
22	NEU20	UV light	30W	2s	colorless to	140°C for	This
					purple	10 min	work

References:

- 1 J. Liu, P. X. Li, H. Y. Zeng and G. C. Guo, RSC Adv., 2017, 7, 34901.
- 2 H. J. Chen, M.Li, G. M. Zheng, Z. Y. Fu and J. C. Dai, *RSC Adv.*, 2014, 4, 42983.
- 3 Y. Tan, Z. Y. Fu, Y. Zeng, J. Zhang and J. C. Dai, *J. Mater. Chem.*, 2012, 22, 17452.
- 4 Q. Shi, S. Yu Wu, X. T. Qiu, Y. Q. Sun and S. T. Zheng, *Dalton Trans.*, 2019, **48**, 954.
- 5 J. Wu, L. Lou, H. Sun, C. Tao, T. Li, Z. Wang, X. Zhang and J. Li, *CrystEngComm.*, 2020, **22**, 1078.
- 6 J. B. Wu, Y. Yan, J. Y. Li and J. H. Yu, Chem. Commun., 2013, 49, 4995.
- 7 J. J. Liu, J. Li and W. B. Lu, RSC. Adv., 2019,9, 33155.
- 8 B. D. Ge, Y. Han, S. D. Han and G.M. Wang, *Inorg. Chem. Front.*, 2019,6, 2435.
- 9 L. Li, Z. M. Tu, Y. Hua and H. Zhang, Inorg. Chem. Front., 2019, 6, 3077.
- 10 G. Xu, G. C. Guo, M. S. Wang and J. S. Huang, Angew. Chem., 2007, 119, 3313.
- 11 L. K. Li, H. Y. Li, T. Li, F. A. Li and S.Q. Zang, CrystEngComm., 2018,20, 6412.
- 12 Z. F. Wu, B. Tan, Z. L. Xie and X. Y. Huang, J. Mater. Chem. C., 2016, 4, 2438.
- 13 C. J. Zhang, Z. Wei. Chen, M. S. Wang and G. C. Guo, *Inorg. Chem.*, 2014, 53, 847.
- 14 H. J. Chen, G. M. Zheng, M. Li and Z. Y. Fu, Chem. Commun., 2014, 50, 13544.
- 15 H. Y. Li, Y.L.Wei, S.Q. Zang and Thomas C. W. Mak, Chem. Mater., 2015, 27,

1327.

- 16 Oksana Toma, Nicolas Mercier, and Chiara Botta, Eur. J. Inorg. Chem., 2013, 7, 1113.
- 17 S. L. Li, M. Han, B. Wu, and X. M. Zha, Cryst. Growth Des., 2018, 18, 3883.
- 18 W. Q. Kan, S. Z. Wen, Y. C. He and C. Y. Xu, Inorg. Chem., 2017, 56, 14926.
- 19 P.C. Jhang, N.T. Chuang and S.L. Wang, Angew. Chem. Int. Ed., 2010, 122, 4296.
- 20 Z.W. Chen, G. Lu, P.X. Li, R.G. Lin, L.Z. Cai, M.S. Wang and G.C. Guo, *Cryst. Growth Des.*, 2014, **14**, 2527.
- 21 M. S. Wang, G. C. Guo, G. Xu and J. S. Huang, Angew. Chem., 2008, 120, 3621.