Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Water-Assisted Synthesis of Highly Stable CsPbX₃ Perovskite Quantum Dots embedded in Zeolite-Y

Hui Cheng,^{a,b,} Yanfeng Yin,^b Jianbo Tang,^b Donghua Fan, ^{a*} Jan J. Huang,^{a*} Shengye Jin ^{b*}

^aSchool of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, China

^bNational Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of

Chemical Physics, Chinese Academy of Sciences, Dalian, China, 116023

Corresponding Author

Shengye Jin (sjin@dicp.ac.cn)

Jan J. Huang (77290732@qq.com)

Donghua Fan (donghua fan@126.com)

The fluorescence quantum yield of CsPbBr3-Y measures the absolute quantum yield using Fluorescence Master Systems (Horiba M470). The system consists of an excitation light source (450 nm), an integrating sphere, a multi-channel detector capable of simultaneous detection of multiple wavelengths, and test software. During the test, CsPbBr₃-Y powder is added into the sample cell for measurement, where the system will give the fluorescence quantum efficiency of the sample.

Figure S1. The emission decay curves of $CsPbBr_3$ ODs (a) and $CsPbBr_3$ -Y (b) in 100% relative humidity.

Table S1 The emission lifetimes of $CsPbBr_3$ ODs in 100%RH

Time	0 h	2 h	3 h	4 h	5 h
Lifetime ns	10.5	7.1	6.7	6.5	5.9

Table S2 The emission lifetimes of $CsPbBr_3$ -Y in 100%RH

Time	0 h	4 h	16 h	24 h	48 h	120 h	240 h
Lifetime ns	16.8	21.1	25.4	24.1	22.4	7.6	8.4

The X-ray diffraction (XRD) patterns of the $CsPb(Cl_{0.4}Br_{0.6})_3$ -Y and $CsPb(Br_{0.6}I_{0.4})_3$ -Y possess similar characteristic peaks as that of $CsPbBr_3$ -Y, where the diffraction patterns of zeolite-Y can only be clearly observed, which is due to the much stronger diffraction peaks in in zeolite-Y than the QDs.

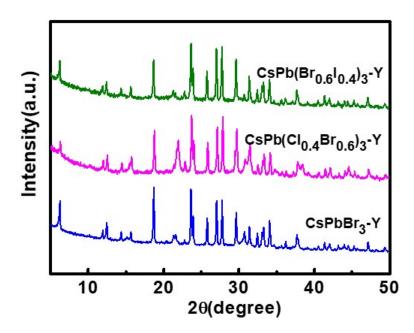


Figure S2. PXRD patterns of CsPbBr₃-Y, CsPb(Cl_{0.4}Br_{0.6})₃-Y, and CsPb(Br_{0.6}I_{0.4})₃-Y.

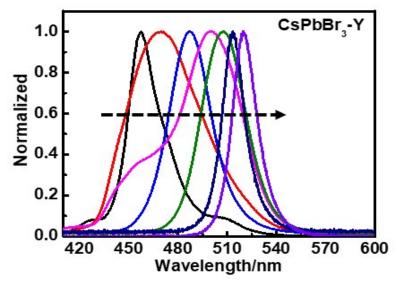


Figure S3. The emission spectra of CsPbBr₃-Y with different size.

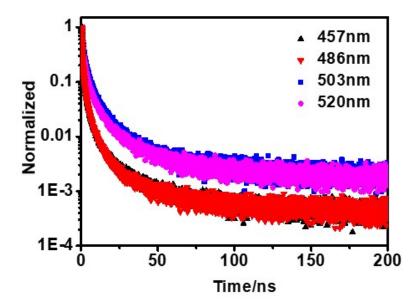


Figure S4. The emission decay curves of CsPbBr₃-Y with different sizes.

Table S3. The emission lifetimes of CsPbBr₃-Y with different sizes.

Emission	457 nm	486 nm	503 nm	520 nm

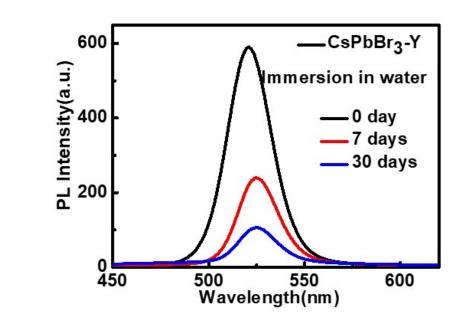


Figure S5. The emission spectra of CsPbBr₃-Y after being immersed in water.

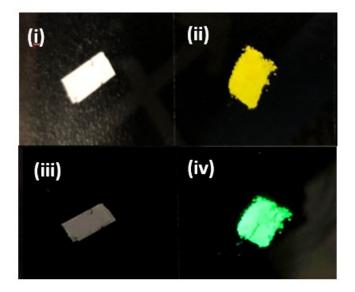


Figure S6. Cs₄PbBr-Y in sun light (i), CsPbBr₃ in sun light (ii), Cs₄PbBr₆-Y under UV(iii), CsPbBr₃ under UV(iv);

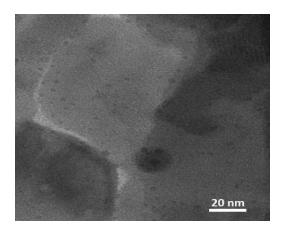


Figure S7. The TEM image of $CsPbBr_3$ -Y (White arrow: Zeolite-Y; Black arrow: QDs. The size of QDs is about 2-5 nm.