Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

for

Hydrogenation of CO to Olefins over Supported Iron Catalyst on

MgAl₂O₄ Spinel : Effect of the spinel Synthesis Method

Yu Wang¹, Hou-Xing Li¹, Xue-Gang Li¹, Wen-De Xiao^{1*} De Chen²

¹Shanghai Jiao Tong University, Shanghai, China

²Norwegian University of Science and Technology, 7491 Trondheim, Norway

E-mail: wdxiao@sjtu.edu.cn

Table S1. The amount of reagents used for support preparation (unit: g)

		•			,
Sample	$Al(NO_3)_3 \cdot 9H_2O$	$Mg(NO_3)_2 \cdot 6H_2O$	$C_6H_6O_7$ · H_2O	$C_{10}H_{16}N_2O_8$	$NH_3 \cdot H_2O$
			(CA)	(EDTA)	(25%)
MAC	30.0104	10.2564	25.2168		
MAG	30.0104	10.2564		35.0688	30 mL
MAP	30.0104	10.2564			300 mL

Table S2. The amount of reagents used for catalyst preperation (unit:g)

Sample	Support	$Fe(NO_3)_3 \cdot 9H_2O$	$Mn(NO_3)_2$	KNO ₃	$C_6H_6O_7 \cdot H_2O$	
			(50% aq)		(CA)	
СМАС	5.0000	4.1461	0.7480	0.1488	3.1928	
CMAG	5.0000	4.1461	0.7480	0.1488	3.1928	
CMAP	5.0000	4.1461	0.7480	0.1488	3.1928	

Table S3 Compositions of the catalysts determined by ICP

K-Mn-Fe/ MgO·Al ₂ O ₃ -X	CMAC	CMAG	CMAP
K (wt%)	0.73	0.68	0.71
Mn (wt%)	1.82	1.75	1.78
Fe (wt%)	7.06	6.89	6.97

Table S4 Data of peak deconvolution for CO₂-TPD of supports

MAC			MAG			МАР		
Center	Peak	Dercentage	Center	Peak	Dercentage	Center	Peak	Dercentage
Temp.	Area	(04)	Temp.	Area	(%)	Temp.	Area	(04)
(°C)	(a.u.)	(%)	(°C)	(a.u.)	(70)	(°C)	(a.u.)	(70)
142.2	453.1	7.4	115.0	54.6	3.8	141.0	442.0	19.8
193.7	1473.3	24.2	142.2	481.9	33.9	188.0	818.4	36.6
278.4	1922.4	31.6	214.2	309.4	21.7	246.9	589.6	26.4
370.3	535.1	8.8	285.4	346.8	24.4	341.1	199.4	8.9
478.9	940.0	15.4	420.9	153.8	10.8	529.7	184.2	8.3
557.1	763.6	12.5	585.3	76.6	5.4			

	CMAC		-	CMAG			CMAP	
Center Temp.	Peak Area	Percentage (%)	Center Temp.	Peak Area	Percentage (%)	Center Temp.	Peak Area	Percentage (%)
$\frac{(c)}{1362}$	879 1	19 4	1333	319.1	23.1	160 3	630.5	21.6
185.7	983.7	21.7	195.5	411.8	29.8	218.1	826.4	28.3
253.0	577.5	12.7	279.1	158.9	11.5	323.6	874.6	29.9
318.2	428.6	9.4	350.8	51.1	3.7	507.8	280.3	9.6
426.3	615.9	13.6	506.3	194.8	14.1	699.5	310.0	10.6
496.3	577.8	12.7	438.4	28.2	2.0			
655.3	219.5	4.8	604.1	167.5	12.1			
589.8	260.0	5.7	737.4	49.5	3.6			

Table S5 Data of peak deconvolution for CO2-TPD of catalysts

Fig. S1. CO₂-TPD of the supports: (a) and corresponding catalysts: (b).

Fig. S2. Fe 2p XPS spectra of pretreated catalysts

Fig. S3. Raman spectra of spent catalysts

Fig. S4 Chromatogram of TCD detector

Fig. S5 Chromatogram of FID detector