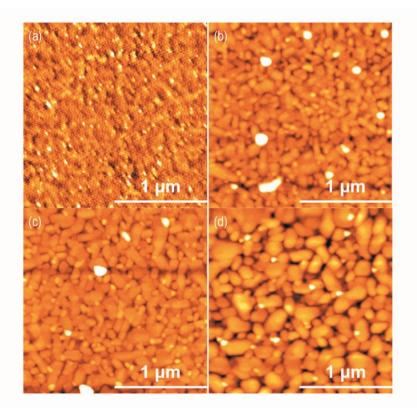
Supplementary Material

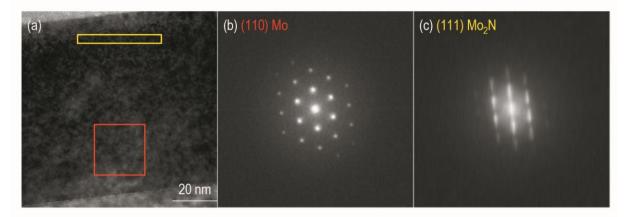
Formation of buried superconducting Mo₂N by nitrogen-ion-

implantation

Joonhyuk Lee,^a Jun Kue Park,^b Joon Woo Lee,^c Yunseok Heo,^a Yoon Seok Oh,^c Jae S. Lee,^b


Jinhyung Cho,^d and Hyoungjeen Jeen^{*a}

^aDepartment of Physics, Pusan National University, Busan 46241, Korea.; E-mail: hjeen@pusan.ac.kr


^bKorea Multi-Purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju 38180, Korea

^cDepartment of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea

^dDepartment of Physics Education, Pusan National University, Busan 46241, Korea

Figure S1 AFM images of (a) as-grown Mo film and nitrogen-ion implanted Mo films with different doses: (b) 10^{15} ions/cm², (c) 10^{16} ions/cm², (d) 5×10^{16} ions/cm². The r.m.s roughness values are 0.58 nm from an as-grown Mo film, 2.47 nm from the implanted film with 10^{15} ions/cm², 1.87 nm from the implanted film with 10^{16} ions/cm², and 1.66 nm from the implanted film with 5×10^{16} ions/cm². It can be interpreted as surface damage at the lower dose and the grain growth and surface smoothening due to prolonged heating driven by ion implantation.

Figure S2 (a) cross-sectional TEM image of nitrogen-ion implanted Mo film with 5 x 10^{16} ions/cm² and fast Fourier transformation (FFT) of (b) (110) Mo film and FFT of (c) (111) γ -Mo₂N layer. The zone axes are [-1 1 -1] of Mo and [0 -1 1] of γ -Mo₂N, which are matched with the simulation software (Single Crystal, UK). Calculating the lattice constant along [110] from the FFT of (110) Mo is 4.60 nm. This is similar to the known value (4.46 nm). The lattice constant along [111] γ -Mo₂N is 7.159 nm, similar with the known value (7.208 nm).