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Governing equations
Inserting expressions (6), (7) and (11) into Eq. (5) for the specific Helmholtz free energy ¥
and using Eq. (12), we find that
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Differentiation of Eq. (S-1) with respect to time implies that
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the superscript dot stands for the derivative with respect to time ¢. In derivation of Eq. (S-2),
X is treated as a constant due to condition (13).
The derivatives of the principal invariants I, (1 ), I ), ]e(3 of the tensors B{™ (m =1,2)

read
i) =28 D, I =2(15 - 15 B) ) D, Y =21 D, (33

where the colon denotes convolution, L = F - F~1 is the velocity gradient, and D = (L + L")
is the rate-of-strain tensor. It follows from Eqs. (S-2) and (S-3) that
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To develop constitutive equations for a TR gel, we apply the free energy imbalance inequality
\i] — Umec — Udif S Oa (8‘6)

where e and ug; denote works (per unit volume in the initial state and unit time) produced

by stresses and diffusion of solvent molecules.
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The specific mechanical work is determined by the conventional formula
Umee = J 2 : D, (S-7)

where J = det F', and ¥ is the Cauchy stress tensor.
The specific work produced by solvent transport is determined by

Ugif = ,UC' + Ugif (S-8)

with
agir > 0. (S-9)

Eq. (S-6) is satisfied when the functions C' and F are connected by the molecular incom-
pressibility condition (1). To account for this connection, we differentiate Eq. (1) with respect
to time and find that

Cv—JI:D =0. (S-10)

We now multiplying Eq. (S-10) by an arbitrary function IT (pressure treated as a Lagrange
multiplier) and add the result to Eq. (S-6). Using Eqgs. (S-4), (S-7) and (S-8), we arrive at the
formula

(K +1v — p)C + 2K — J(E 4 TII)] : D — Gig; < 0. (S-11)

Keeping in mind that C' and D are arbitrary functions and using Eq. (S-9), we conclude
that inequality (S-11) is fulfilled, provided that the chemical potential p of water molecules

reads

Q 1 X IIv
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and the Cauchy stress tensor ¥ is given by

p=p’+ksTop,  p=1
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where degree of swelling @) is given by Eq. (15).

Eqgs. (S-12) and (S-13) provide constitutive equations for the mechanical response of a TR
gel. Adopting the neo-Hookean expressions (9) for the functions W,,, we present Eq. (S-13) in
the form

1

S=-Mt [Gl( — ) + Gy(B I)] (S-14)
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We consider unconstrained equilibrium swelling of a TR gel in a water bath with a fixed

temperature 7" when pressure in the bath is disregarded,
[1hath = 0. (S-15)

Under equilibrium, @ is independent of spatial coordinates (it depends on temperature T only),

and the deformation gradient reads
F=(14Q)sL (S-16)

Combining Egs. (S-14) and (S-16) and using Eqgs. (3) and (4), we find that

1 14+Q

S=3I, x= —H+—{G1[(HQO)g —1} +Gg[(1+Q)% —1”. (S-17)

It follows from the equilibrium conditions and Eq. (S-15) that
Y =0.

Insertion of Eq. (S-17) into this equality implies that

H:ﬁ{Gleigo)g_l] + G|+ @)f —1] ], (5-18)

The chemical potential of water molecules in a gel is determined by Eq. (S-12). Its chemical
potential in the bath is given by the same equality where the terms describing interactions

between water molecules and segments of chains are disregarded,

pbath — 0 (S-19)
Substituting expressions (S-12) and (S-19) into the equilibrium condition

= pbh (S-20)

and using Eq. (S-18), we arrive at the nonlinear equation for the equilibrium degree of swelling,

lnlfQ+1iQ+(1+XQ)2+1ilQ[<11igo>3_1}+1TQ[(1+Q)

where dimensionless elastic moduli g, are given by Eq. (17).
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Tables

Table S-1: Material parameters for copolymer gels

Comonomer Qo I Xmax Xeo G2 B Fig
tBA 1.0 0.01 0.64 4.17 4.0 0.04 1A
NtBAm 0.1 0.009-0.017 0.58 4.06 4.0 0.08 2A
HEMA 2.7-9.5 0.12 0.58 1.56 0.3 0.09 3A
HEMA 0.5-1.2 0.04 0.54 1.56 0.5 0.10 S-3A
TREGMA 12.0-17.3 0.10 0.63 —1.11 3.5 0.10 4A
DMAAm 3.5-4.0 0.06 0.58 —1.81 0.8 0.09 5A
DMAAm 1.7-3.1 0.03 0.50 —1.81 3.2 0.10 6A
AAm 7.0-10.1 0.03 0.51 —4.12 2.8 0.09 T7A

Table S-2: The FH parameter for comonomers X, versus their Hildebrand solubility dy.

Comonomer Xeo OH (MPa)%
tBA 4.17 16.74
NtBAm 4.06 20.43
HEMA 1.56 23.81
TREGMA —1.11 21.73
DMAAm —1.81 24.26
AAm —4.12 25.71
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Figures
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Figure S-1: Hydrodynamic radius 7y, of microgel particles versus temperature T'. Circles: exper-
imental data [53] on P(NIPAm-tBA) microgels with molar fractions of comonomers c., = 0.11

(A), cco =0.16 (B), and ¢, = 0.21 (C). Solid lines: results of simulation.
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Figure S-2: Hydrodynamic radius ry of microgel particles versus temperature 7. Symbols:
experimental data [55] on P(NIPAm-NtBAm) microgels with molar fractions of comonomers

Ceo = 0.05 (A) and ¢, = 0.10 (B). Solid lines: results of simulation.
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Figure S-3: A — Degree of swelling @) versus temperature 7. Symbols: experimental data [59]
on P(NIPAm-HEMA) gels with various molar fractions of comonomers c.,. Solid lines: results
of simulation. B — Parameter ¢, versus molar fraction of comonomers c.,. Circles: treatment

of observations. Solid line: results of simulation.
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Figure S-4: Hydrodynamic radius 7, of microgel particles versus temperature T'. Circles: ex-

perimental data [60] on P(NIPAm-TREGMA) microgels with molar fractions of comonomers
Ceo = 0.04 (A) and ¢, = 0.08 (B). Solid lines: results of simulation.
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Figure S-5: Hydrodynamic radius 7, of microgel particles versus temperature 7'. Circles: ex-
perimental data [63] on P(NIPAm-DMAAm) microgels with molar fractions of comonomers

Ceo = 0.06 (A), cco = 0.10 (B), ceo = 0.14 (C) and ¢, = 0.16 (D). Solid lines: results of
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simulation.
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