Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

For

Stereocontrolled Addition of Grignard Reagents to Oxa-Bridged Benzazepines: Highly Efficient Synthesis of Functionalized Benzazepine Scaffolds

Yuewei Zhang ^a, Qingqing Bao ^a, Ning Zhang ^a, Shuohang Wang ^a, Xue Yu^{b*}

(*^a* School of chemistry and pharmaceutical engineering, Jilin institute of chemical technology, Jilin 132022, China; *^b* Division of science and technology, Jilin institute of chemical technology, Jilin 132022, China;)

Table of Contents

General Experimental Procedures.	2
General Procedure for the Synthesis of S2a, S2c, S2d	3
2-(Diallylamino)-5-methylbenzaldehyde S2b	4
General Procedure for the Synthesis of 1a, 1c, 1d	5
1-Allyl-7-methyl-2,3,4,5-tetrahydro-1H-2,5-epoxybenzo[b]azepine 1b	6
2,3,4,5-tetrahydro-1H-2,5-epoxybenzo[b]azepine 1e	8
General Procedure for the Synthesis of 2	9
General Procedure for the Synthesis of 3	19
Procedure for the Synthesis of 4	26
NMR Spectra	28
X-ray Crystallographic data for Compound syn-2m	65
Confirmation of the ratio of stereoisomers 2	65

General Experimental Procedures. Unless otherwise noted, reactions were carried out in air. Chemicals and solvents were either purchased from commercial suppliers or purified by standard procedures. Analytical thin-layer chromatography (TLC) was performed on silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light or by treatment with iodine. Flash column chromatography was performed with silica gel 200-300 mesh. The melting point was uncorrected. Mass spectra and HPLC data were recorded on a LC/MS system. ¹H NMR and ¹³C NMR spectra were recorded on 300 MHz and 75 MHz spectrometers respectively. The spectra were recorded in CDCl₃ as the solvent at room temperature unless otherwise noted. ¹H and ¹³C NMR chemical shifts are reported in ppm relative to TMS as an internal standard. Multiplicities are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doubled doublet; br, broad. HRMS was recorded on a LC TOF (ES).

Displacement of the 2-fluorobenzaldehyde **S1** using allylamine provided 2-(allylamino)benzaldehyde **S2**. Aldehyde **S2** was transformed into oxa-bridged azepine **1** by the carbonyl ene-type reaction in excellent yields. Subsequently, removal of the allyl group in **1a** with a palladium catalyst furnished amine **1e**, as shown in S-Scheme 1.

S-Scheme 1. Synthesis of Ring-Opening Precursors

General Procedure for the Synthesis of S2a, S2c, S2d

To a solution of 2-fluorobenzaldehyde (248 mg, 2 mmol) in water (4 mL) was added secondary amine (2.4 mmol) and K₂CO₃ (0.414 mg, 3 mmol). The reaction mixture was heated at reflux until 2-fluorobenzaldehyde was consumed as monitored by TLC. The reaction solution was then diluted with water (10 mL), and extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (petroleum ether/ethyl acetate = 50:1, v/v) afforded the desired product S2.

2-(Diallylamino)benzaldehyde (S2a)

Pale yellow oil (362 mg, 90% yield); ¹H NMR (300 MHz, CDCl₃) δ 10.35 (s, 1H, CHO), 7.80 (dd, J = 7.8, 1.8 Hz, 1H, phenyl-H), 7.55 – 7.36 (m, 1H, phenyl-H), 7.20 – 6.95 (m, 2H, phenyl-H), 5.95 – 5.70 (m, 2H, CH₂CH=CH₂), 5.32 – 5.12 (m, 4H, 2CH₂CH=CH₂), 3.89 – 3.71 (m, 4H, 2*CH*₂CH=CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 191.4, 154.1, 134.1, 133.8, 129.3, 129.2, 122.0, 121.2, 118.0, 57.18. HRMS (ESI-TOF): calcd. for C₁₃H₁₆NO [M + H]⁺ 202.1226; found 202.1223.

2-(Diallylamino)-5-methylbenzaldehyde (S2b)

To a solution of 2-fluoro-5-methylbenzaldehyde (276 mg, 2 mmol) in *N*,*N*-Dimethylformamide (4 mL) was added diallylamine (0.49 mL, 4 mmol) and K₂CO₃ (0.414 mg, 3 mmol). The reaction mixture was heated at reflux 4 d. The reaction solution was then diluted with water (40 mL), and extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (petroleum ether/ethyl acetate = 30:1, v/v) afforded the desired product **2b** (258 mg, 60%) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 10.38 (s, 1H, CHO), 7.61 (d, *J* = 2.4 Hz, 1H, phenyl-H), 7.29 (ddd, *J* = 8.4, 2.4, 0.6 Hz, 1H, phenyl-H), 7.03 (d, *J* = 8.4 Hz, 1H, phenyl-H), 5.94 – 5.74 (m, 2H, CH₂CH=CH₂), 5.23 – 5.13 (m, 4H, CH₂CH=CH₂), 3.73 (dt, *J* = 6.0, 1.2 Hz, 4H, CH₂CH=CH₂), 2.32 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 191.9, 152.1, 135.1, 134.0, 132.1, 129.6, 129.1, 121.7, 117.9, 57.5, 20.4; HRMS (ESI-TOF): calcd. for C₁₄H₁₈NO [M + H]⁺ 216.1383; found 216.1389.

5-Chloro-2-(diallylamino)benzaldehyde (S2c)

Pale yellow oil (635 mg, 90% yield). ¹H NMR (300 MHz, CDCl₃) δ 10.29 (s, 1H, CHO), 7.75 (d, *J* = 2.7 Hz, 1H, phenyl-H), 7.40 (dd, *J* = 8.7, 2.7 Hz, 1H, phenyl-H), 7.05 (d, *J* = 8.7 Hz, 2H, phenyl-H), 5.93 – 5.66 (m, 2H, 2CH₂CH=CH₂), 5.36 – 5.08

(m, 4H, 2CH₂CH=CH₂), 3.76 (dt, J = 6.0, 1.2 Hz, 4H, 2CH₂CH=CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 190.1, 152.5, 133.9, 133.4, 130.2, 128.7, 127.8, 122.9, 118.4, 57.3; HRMS (ESI-TOF): calcd. for C₁₃H₁₅ClNO [M + H]⁺ 236.0837; found 236.0841.

2-(Allyl(methyl)amino)benzaldehyde (S2d).

Yellow oil (319 mg, 91% yield); ¹H NMR (CDCl₃) δ 10.26 (s, 1H, CHO), 7.78 (dd, J = 7.7, 1.6 Hz, 1H, phenyl-H), 7.55 – 7.38 (m, 1H, phenyl-H), 7.08 (d, J = 8.4 Hz, 1H, phenyl-H), 7.06 – 6.96 (m, 1H, phenyl-H), 5.91 (m, 1H, CH₂CH=CH₂), 5.26 (m, 2H, CH₂CH=CH₂), 3.73 (d, J = 5.7 Hz, 2H, CH₂CH=CH₂), 2.85 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 191.2, 155.4, 134.4, 134.0, 130.1, 127.7, 121.1, 118.8, 117.8, 61.9, 40.9; HRMS (ESI-TOF): calcd. for C₁₁H₁₄NO [M + H]⁺ 176.1070; found 176.1078.

General Procedure for the Synthesis of 1a, 1c, 1d

The 2-(allylamino)nicotinaldehyde **S2** (1.0 mmol) was dissolved in xylene (10 mL). The resulting solution was stirred at reflux until **S2** had been consumed, as monitored by TLC. The reaction mixture was purified by flash column chromatography (petroleum ether/ethyl acetate, 30:1, v/v) afforded the desired product **1**.

1-Allyl-2,3,4,5-tetrahydro-1H-2,5-epoxybenzo[b]azepine (1a).

Pale yellow oil (179 mg, 89% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.09 (t, J = 7.5 Hz, 1H, phenyl-H), 6.89 (d, J = 7.2 Hz, 1H, phenyl-H), 6.73 – 6.60 (m, 2H, phenyl-H), 6.08 – 5.80 (m, 1H, CH₂CH=CH₂), 5.42 – 4.92 (m, 4H, CH₂CH=CH₂ and 2CH), 4.10 – 3.70 (m, 2H, CH₂CH=CH₂), 2.30 – 1.94 (m, 4H, 2CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 141.8, 134.8, 128.2, 128.0, 124.2, 117.7, 116.3, 114.3, 90.3, 89.8, 77.9, 54.4, 36.8, 33.7. HRMS (ESI-TOF): calcd. for C₁₃H₁₆NO [M + H]⁺ 202.1226; found 202.1231.

1-Allyl-7-methyl-2,3,4,5-tetrahydro-1H-2,5-epoxybenzo[b]azepine (1b)

The 2-(diallylamino)-5-methylbenzaldehyde **S2b** (215 mg, 1.0 mmol) was dissolved in orthodichlorobenzene (10 mL). The resulting solution was stirred at reflux 18 h. The reaction mixture was purified by flash column chromatography (petroleum ether/ethyl acetate, 20:1, v/v) afforded the desired product **1b** (187 mg, 87%) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 6.92 (dd, J = 8.1, 2.1 Hz, 1H, phenyl-H), 6.72 (d, J = 2.1 Hz, 1H, phenyl-H), 6.61 (d, J = 8.1 Hz, 1H, phenyl-H), 6.04 – 5.85 (m, 1H, CH₂CH=CH₂), 5.35 – 5.24 (m, 1H, CH₂CH=CH₂), 5.23 – 5.13 (m, 2H, CH₂CH=CH₂ and CH), 5.00 – 4.92 (m, 1H, CH), 3.94 (ddt, J = 16.5, 6.0, 1.5 Hz, 1H, CH₂CH=CH₂), 3.78 (ddt, J = 16.5, 4.8, 1.8 Hz, 1H, CH₂CH=CH₂), 2.23 (s, 3H, CH₃), 2.19 – 1.93 (m, 4H, 2CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 139.7, 135.3, 128.8, 128.5, 127.5, 124.9, 116.4, 115.6, 89.8, 77.6, 55.6, 37.0, 33.1, 20.4; MS (ESI) *m/z* 216.2 [M + H]⁺. HRMS (ESI-TOF): calcd. for C₁₄H₁₈NO [M + H]⁺ 216.1383; found 216.1381.

1-Allyl-7-chloro-2,3,4,5-tetrahydro-1H-2,5-epoxybenzo[b]azepine (1c)

Pale yellow oil (209 mg, 89% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.04 (dd, J = 8.7, 2.4 Hz, 1H, phenyl-H), 6.87 (d, J = 2.4 Hz, 1H, phenyl-H), 6.54 (d, J = 8.7 Hz, 1H, phenyl-H), 5.96 – 5.80 (m, 1H, CH₂CH=CH₂), 5.32 – 5.23 (m, 1H, CH₂CH=CH₂), 5.22 – 5.12 (m, 2H, CH₂CH=CH₂ and CH), 5.02 – 4.95 (m, 1H, CH₂CH=CH₂), 3.93 (ddt, J = 16.8, 5.7, 1.5 Hz, 1H, CH₂CH=CH₂), 3.79 (ddt, J = 16.8, 4.8, 1.8 Hz, 1H, CH₂CH=CH₂), 2.25 – 2.08 (m, 3H, CH₂), 2.08 – 1.97 (m, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 134.2, 129.5, 127.8, 124.1, 122.3, 116.6, 115.4, 89.8, 77.5, 54.3, 36.6, 33.9; HRMS (ESI-TOF): calcd. for C₁₃H₁₅ClNO [M + H]⁺ 236.0837; found 236.0839.

1-Methyl-2,3,4,5-tetrahydro-1H-2,5-epoxybenzo[b]azepine (1d)

Pale yellow oil (157 mg, 90% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.18 – 7.04 (m, 1H, phenyl-H), 6.92 – 6.79 (m, 1H, phenyl-H), 6.75 – 6.56 (m, 2H, phenyl-H), 5.14 (d, J = 4.5 Hz, 1H, CH), 5.01 (d, J = 5.4 Hz, 1H, CH), 2.91 (s, 3H, CH₃), 2.26 – 1.99 (m, 4H, 2CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 142.8, 128.1, 124.0, 117.7, 113.9, 91.3,

78.1, 37.5, 36.8, 32.4; HRMS (ESI-TOF): calcd. for $C_{11}H_{14}NO [M + H]^+$ 176.1070; found 176.1076.

2,3,4,5-tetrahydro-1H-2,5-epoxybenzo[b]azepine (1e)

To a solution of compound **1a** (402 mg, 2.0 mmol) in dry CH₂Cl₂ (20 mL) was added *N*,*N'*-Dimethylbarbituric acid (936 mg, 6.0 mmol), palladium acetate (9 mg, 0.04 mmol) and triphenylphosphine (47 mg, 0.18 mmol) under argon. The reaction mixture was stirred at 35 °C for 4 h. After cooling, saturated sodium bicarbonate solution was added in the reaction mixture to adjust the pH to 9-10 and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (petroleum ether/ethyl acetate = 5:1, v/v) afforded the desired product **1e** (251 mg, 78% yield) as a white solid, M.P. 70-72 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.15 – 7.04 (m, 1H, phenyl-H), 6.95 – 6.91 (m, 1H, phenyl-H), 6.83 – 6.71 (m, 1H, phenyl-H), 6.66 – 6.61 (m, 1H, phenyl-H), 5.38 – 5.35 (m, 1H, CH), 5.04 – 5.01 (m, 1H, CH), 2.32 – 2.14 (m, 3H, CH₂), 2.07 – 2.00 (m, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 139.1, 129.1, 127.8, 124.7, 119.2, 117.1, 84.4, 76.8, 37.1, 34.2; HRMS (ESI-TOF): calcd. for C₁₀H₁₂NO [M + H]⁺ 162.0913; found 162.0918.

General Procedure for the Synthesis of 2

To a solution of compound 1 (1.0 mmol) in dry CH₂Cl₂ (10 mL) at 0 °C was added

Grignard reagent (2.5 mmol). The resulting solution was stirred at 0 °C until compound **1** had been consumed, as monitored by TLC. Then it was treated with saturated aqueous NH₄Cl (5 mL) and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (petroleum ether/ethyl acetate = 20:1, v/v) afforded the desired product **2**.

1-Allyl-2-methyl-2,3,4,5-tetrahydro-*1H*-benzo[*b*]azepin-5-ol (2a, syn/anti = 69/31) Colourless oil (208 mg, 96%);

The major isomer syn-2a was obtained by preparative thin layer chromatography. ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, *J* = 7.5 Hz, 1H, phenyl-H), 7.19 (td, *J* = 7.5, 1.5 Hz, 1H, phenyl-H), 7.05 (t, *J* = 7.8 Hz, 1H, phenyl-H), 6.93 (d, *J* = 7.5 Hz, 1H, phenyl-H), 5.92 – 5.75 (m, 1H, CH₂CH=CH₂), 5.29 – 5.19 (m, 1H, CH₂CH=CH₂), 5.14 – 5.08 (m, 1H, CH₂CH=CH₂), 4.99 (dd, *J* = 8.1, 4.8 Hz, 1H, CH (HO)), 3.91 – 3.80 (m, 1H, CH₂CH=CH₂), 3.73 – 3.62 (m, 1H, CH₂CH=CH₂), 3.37 – 3.20 (m, 1H, CH(Me)), 2.55 (br. s, 1H, OH), 2.14 – 1.90 (m, 1H, CH₂), 1.87 – 1.55 (m, 2H, CH₂), 1.51 – 1.34 (m, 1H, CH₂), 0.81 (d, *J* = 6.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.2, 139.3, 136.7, 126.8, 123.6, 122.5, 121.1, 116.7, 71.5, 54.7, 53.0, 32.6, 30.6, 15.2; HRMS (ESI-TOF): calcd. for C₁₄H₂₀NO [M + H]⁺ 218.1539; found 218.1547. The minor isomer anti-2a was obtained by preparative thin layer chromatography. ¹H NMR (300 MHz, CDCl₃) δ 7.21 – 7.15 (m, 1H, phenyl-H), 7.13 – 7.08 (m, 1H, phenyl-H), 7.03 – 6.90 (m, 2H, phenyl-H), 5.96 – 5.79 (m, 1H, CH₂CH=CH₂), 5.32 – 5.24 (m, 1H, CH₂CH=CH₂), 5.22 – 5.13 (m, 1H, CH₂CH=CH₂), 4.79 (br. s, 1H, OH), 4.71 (t, *J* = 4.5 Hz, 1H, CH (HO)), 3.95 – 3.77 (m, 1H, CH₂CH=CH₂), 3.70 – 3.60 (m, 1H, CH₂CH=CH₂), 3.47 – 3.35 (m, 1H, CH(Me)), 2.23 – 2.01 (m, 1H, CH₂), 1.98 – 1.85 (m, 2H, CH₂), 1.42 – 1.30 (m, 1H, CH₂), 0.79 (d, *J* = 6.9 Hz, 3H); HRMS (ESI-TOF): calcd. for C₁₄H₂₀NO [M + H]⁺ 218.1539; found 218.1545.

1-AllyI-2-ethyI-2,3,4,5-tetrahydro-*1H*-benzo[*b*]azepin-5-ol (2b, syn/anti = 91/9) Colourless oil (224 mg, 97%); ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, *J* = 7.2 Hz, 1H, phenyI-H), 7.22 – 7.13 (m, 1.1H, phenyI-H), 7.12 – 7.07 (m, 0.1H, phenyI-H), 7.07 – 7.00 (m, 1H, phenyI-H), 6.99 – 6.91 (m, 1.3H, phenyI-H), 5.98 – 5.74 (m, 1H, CH₂CH=CH₂), 5.34 – 5.18 (m, 1.2H, CH₂CH=CH₂), 5.18–5.05 (m, 1.1H, CH₂CH=CH₂), 4.89 (dd, *J* = 9.6, 3.6 Hz, 1H, CH (HO)), 4.71 (d, *J* = 4.5 Hz, 0.1H, CH (HO)), 4.00 – 3.83 (m, 1.2H, CH₂CH=CH₂), 3.82 – 3.65 (m, 1.3H, CH₂CH=CH₂), 3.18 – 2.94 (m, 1.1H, CH(Et)), 2.29 (br. s, 1H, OH), 2.05 – 1.88 (m, 1.2H, CH₂), 1.85 – 1.55 (m, 3H, CH₂), 1.38 – 1.20 (m, 1.2H, CH₂), 1.05 – 0.85 (m, 1.3H, CH₂), 0.85 –

0.70 (m, 3.3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 146.6, 145.7, 139.1, 136.9, 136.0, 127.6, 127.5, 126.6, 123.5, 122.6, 122.1, 121.0, 120.9, 117.6, 116.6, 74.9, 71.9, 60.2, 59.0, 56.0, 55.7, 30.3, 29.2, 27.5, 25.5, 22.5, 21.3, 11.7, 11.5; HRMS (ESI-TOF): calcd. for C₁₅H₂₂NO [M + H]⁺ 232.1696; found 232.1694.

1-Allyl-2-isopropyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol (2c, syn)

Colourless oil (216 mg, 88%); ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, J = 7.5 Hz, 1H, phenyl-H), 7.17 (td, J = 7.5, 1.2 Hz, 1H, phenyl-H), 7.06 – 6.95 (m, 2H, phenyl-H), 5.90 – 5.73(m, 1H, CH₂CH=CH₂), 5.24 – 5.15 (m, 1H, CH₂CH=CH₂), 5.11 – 5.05 (m, 1H, CH₂CH=CH₂), 4.90 – 4.78 (m, 1H, CH (HO)), 4.11 – 3.97 (m, 1H, CH₂CH=CH₂), 3.90 – 3.78 (m, 1H, CH₂CH=CH₂), 2.93 – 2.83 (m, 1H, CH(*i*-Pr)), 2.08–1.92 (m, 1H, CH₂), 1.88 (br. s, 1H, OH), 1.82 – 1.40 (m, 4H, CH₂ and CH), 0.83 (d, J = 6.6 Hz, 3H), 0.69 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 145.7, 139.1, 137.2, 126.5, 123.4, 121.9, 121.7, 116.4, 72.0, 63.8, 57.7, 31.0, 28.9, 27.6, 20.7, 19.2; HRMS (ESI-TOF): calcd. for C₁₆H₂₄NO [M + H]⁺ 246.1852; found 246.1857.

1-Allyl-2-cyclohexyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol (2d, syn)

Colourless oil (237 mg, 83%); ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, J = 7.5 Hz, 1H, phenyl-H), 7.17 (td, J = 7.5, 1.5 Hz, 1H, phenyl-H), 7.07 – 6.94 (m, 2H, phenyl-H), 5.90–5.68 (m, 1H, CH₂CH=CH₂), 5.27 – 5.15 (m, 1H, CH₂CH=CH₂), 5.12 – 5.03 (m, 1H, CH₂CH=CH₂), 4.82 (dd, J = 10.2, 3.3 Hz, 1H, CH (HO)), 4.05 (ddt, J = 14.1, 5.1, 1.5 Hz, 1H, CH₂CH=CH₂), 3.90 – 3.72 (m, 1H, CH₂CH=CH₂), 3.00 – 2.79 (m, 1H, CH(Cy)), 2.06 – 1.37 (m, 9H, CH and CH₂), 1.35 – 0.69 (m, 6H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 145.7, 139.2, 137.3, 126.5, 123.4, 121.8, 121.7, 116.4, 72.2, 62.5, 58.0, 38.4, 31.0, 29.4, 27.8, 26.4. 26.03, 25.91; MS (ESI) *m/z* 286.1 [M + H]⁺. HRMS (ESI-TOF): calcd. for C₁₉H₂₈NO [M + H]⁺ 286.2165; found 286.2170.

1,2-Diallyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol (2e, anti)

Colourless oil (238 mg, 98%); ¹H NMR (300 MHz, CDCl₃) δ 7.22 – 7.14 (m, 1H, phenyl-H), 7.14 – 7.08 (m, 1H, phenyl-H), 7.02 – 6.93 (m, 2H, phenyl-H), 6.00 – 5.80 (m, 1H, NCH₂CH=CH₂), 5.75 – 5.60 (m, 1H, CH₂CH=CH₂), 5.32 – 5.23 (m, 1H, NCH₂CH=CH₂), 5.23 – 5.16 (m, 1H, NCH₂CH=CH₂), 5.02 – 4.87 (m, 2H, CH₂CH=CH₂), 4.76 – 4.66 (m, 1H, CH (HO)), 4.46 (br. s, 1H, OH), 3.92 – 3.82 (m, 1H, NCH₂CH=CH₂), 3.77 – 3.67 (m, 1H, NCH₂CH=CH₂), 3.34 – 3.24 (m, 1H, CH(Me)), 2.22 – 2.02 (m, 2H, CH₂), 1.90 (m, 2H, CH₂), 1.78 – 1.50 (m, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 146.3, 138.1, 136.1, 135.8, 127.62, 127.59, 122.9,

121.3, 117.9, 116.8, 74.8, 58.2, 55.5, 33.2, 27.7, 26.0; HRMS (ESI-TOF): calcd. for C₁₆H₂₂NO [M + H]⁺ 244.1696; found 244.1695.

1-Allyl-2-phenyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol (2f, syn)

Colourless oil (273 mg, 98%); ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 6.9 Hz, 1H, phenyl-H), 7.38 – 7.19 (m, 4H, phenyl-H), 7.18 – 7.06(m, 3H, phenyl-H), 6.95 (d, J = 7.8 Hz, 1H, phenyl-H), 5.86 – 5.62 (m, 1H, CH₂CH=CH₂), 5.36 (t, J = 8.1 Hz, 1H, CH (HO)), 5.14 – 4.95 (m, 2H, CH₂CH=CH₂), 4.22 (dd, J = 10.2, 3.6 Hz, 1H, CH(Ph)), 3.72 – 3.55 (m, 1H, CH₂CH=CH₂), 3.48 – 3.35 (m, 1H, CH₂CH=CH₂), 2.61 – 2.19 (m, 2H, OH and CH₂), 1.85 – 1.47 (m, 3H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 144.7, 144.3, 138.7, 135.7, 128.3, 127.24, 127.15, 126.9, 123.4, 122.7, 121.9, 116.9, 69.8, 63.9, 54.0, 32.7, 32.4; HRMS (ESI-TOF): calcd. for C₁₉H₂₂NO [M + H]⁺ 280.1696; found 280.1699.

1-Allyl-2,7-dimethyl-2,3,4,5-tetrahydro-*1H*-benzo[*b*]azepin-5-ol (2g, syn/anti = 88/12)

Colourless oil (210 mg, 91%); ¹H NMR (300 MHz, CDCl₃) δ 7.21 (br. s, 1H, phenyl-

H), 7.05 – 6.95 (m, 1H, phenyl-H), 6.91 (d, J = 2.1 Hz, 0.2H, phenyl-H), 6.88 – 6.75 (m, 1H, phenyl-H), 5.98 – 5.70 (m, 1H, CH₂CH=CH₂), 5.34 – 5.16 (m, 1.1H, CH₂CH=CH₂), 5.16 – 4.94 (m, 1H, CH₂CH=CH₂), 4.98 (dd, J = 7.8, 4.8 Hz, 1H, CH (HO)), 4.64 (t, J = 4.5 Hz, 0.2H, CH (HO)), 3.90 – 3.50 (m, 2.3H, CH₂CH=CH₂), 3.42 – 3.33 (m, 0.17H, CH(CH₃)), 3.33 – 3.18 (m, 1H, CH(CH₃)), 2.69 (br. s, 1H, OH), 2.32 (s, 3H, PhCH₃), 2.28 (s, 0.37H, PhCH₃), 2.10 – 1.85 (m, 1.6H, CH₂), 1.85 – 1.55 (m, 2.5H, CH₂), 1.53 – 1.26 (m, 1.6H, CH₂), 0.92 – 0.72 (m, 3.8H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 142.4, 139.0, 136.8, 135.9, 131.9, 128.1, 127.9, 127.2, 124.4, 121.3, 121.0, 117.5, 116.6, 74.5, 71.5, 54.7, 54.6, 53.6, 53.1, 32.6, 30.8, 30.1, 28.8, 20.9, 20.6, 15.1, 13.8; HRMS (ESI-TOF): calcd. for C₁₅H₂₂NO [M + H]⁺ 232.1696; found 232.1700.

1,2-Diallyl-7-methyl-2,3,4,5-tetrahydro*-1H*-benzo[*b*]azepin-5-ol (2h, anti) Colourless oil (231 mg, 90%); ¹H NMR (300 MHz, CDCl₃) δ 7.09 – 6.91 (m, 2H, phenyl-H), 6.88 – 6.80 (m, 1H, phenyl-H), 5.98 – 5.78 (m, 1H, NCH₂CH=CH₂), 5.76 – 5.56 (m, 1H, CH₂CH=CH₂), 5.33 – 5.12 (m, 2H, NCH₂CH=CH₂), 5.05 – 4.85 (m, 2H, CH₂CH=CH₂), 4.66 (br. s, 1H, CH (HO)), 4.51 (br. s, 1H, OH), 3.85 (ddt, *J* = 14.1, 4.8, 1.8 Hz, 1H, CH₂CH=CH₂), 3.69 (ddt, *J* = 14.1, 7.5, 0.9 Hz, 1H, NCH₂CH=CH₂), 3.34 – 3.16 (m, 1H, CH(Allyl)), 2.28 (s, 3H, CH₃), 2.18 – 2.01 (m, 2H, CH₂), 2.01 – 1.78 (m, 2H, CH₂), 1.78 – 1.51 (m, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 138.0, 136.2, 136.0, 132.4, 128.5, 128.0, 121.2, 117.7, 116.8, 74.8, 58.1, 55.6, 33.0, 27.9, 26.1, 20.6; MS (ESI) *m*/*z* 258.0 [M + H]⁺. HRMS (ESI-TOF): calcd. for C₁₇H₂₄NO [M + H]⁺ 258.1852; found 258.1861.

1-Allyl-7-chloro-2-methyl-2,3,4,5-tetrahydro-*1H*-benzo[*b*]azepin-5-ol (2i, syn/anti = 67/33)

Colourless oil (231 mg, 92%); ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, J = 2.1 Hz, 0.7H, phenyl-H), 7.17 – 7.10 (m, 1.6H, phenyl-H), 6.94 – 6.75 (m, 1.3H, phenyl-H), 5.95 – 5.70 (m, 1.1H, CH₂CH=CH₂), 5.32 – 5.07 (m, 2.9H, CH₂CH=CH₂), 4.96 (dd, J = 8.7, 4.5 Hz, 1H, CH (HO)), 4.68 (br. s, 0.4H, CH (HO)), 4.47 (br. s, 0.4 H, OH), 3.87 – 3.71 (m, 1.5H, CH₂CH=CH₂), 3.70 – 3.55 (m, 1.5H, CH₂CH=CH₂), 3.44 – 3.24 (m, 1.4H, CH(CH₃)), 2.29 (br. s, 0.7H, OH), 2.16 – 1.91 (m, 1.5H, CH₂), 1.92 – 1.74 (m, 1.6H, CH₂), 1.73 – 1.53 (m, 1.3H, CH₂), 1.53 – 1.29 (m, 1.5H, CH₂), 0.83 (d, J = 6.6 Hz, 1.6H, CH₃), 0.76 (d, J = 6.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 143.5, 141.3, 139.7, 136.3, 135.3, 127.9, 127.3, 127.1, 126.5, 123.9, 122.4, 122.3, 118.0, 117.0, 73.5, 70.8, 55.0, 54.6, 53.8, 52.7, 32.6, 30.5, 29.5, 28.2, 14.8, 14.3; MS (ESI) *m*/*z* 252.4 [M + H]⁺. HRMS (ESI-TOF): calcd. for C₁₄H₁₉CINO [M + H]⁺ 252.1150; found 252.1159.

1,2-Diallyl-7-chloro-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol (2j, anti)

Colourless oil (252 mg, 91%); ¹H NMR (300 MHz, CDCl₃) δ 7.17 – 7.09 (m, 2H, phenyl-H), 6.92 – 6.82 (m, 1H, phenyl-H), 5.90 – 5.76 (m, 1H, NCH₂CH=CH₂), 5.75 – 5.55 (m, 1H, CH₂CH=CH₂), 5.32 – 5.14 (m, 1H, NCH₂CH=CH₂), 5.08 – 4.87 (m, 1H, CH₂CH=CH₂), 4.69 (br. s, 1H, CH (HO)), 4.20 (br. s, 1H, OH), 3.83 (ddt, J = 14.1, 4.8, 1.5 Hz, 1H, NCH₂CH=CH₂), 3.76 – 3.65 (m, 1H, NCH₂CH=CH₂), 3.32 – 3.22 (m, 1H, CH(Allyl)), 2.22 – 1.98 (m, 2H, CH₂), 1.95 – 1.71 (m, 3H, CH₂ and CH₂CH=CH₂), 1.67 – 1.52 (m, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 144.8, 139.5, 135.7, 135.3, 127.8, 127.4, 127.3, 122.4, 118.2, 117.1, 73.8, 58.2, 55.5, 33.5, 27.4, 25.7; HRMS (ESI-TOF): calcd. for C₁₆H₂₁CINO [M + H]⁺ 278.1306; found 278.1309.

1,2-Dimethyl-2,3,4,5-tetrahydro-*1H*-benzo[*b*]azepin-5-ol (2k, syn/anti = 68/32) Colourless oil (176 mg, 92%); ¹H NMR (300 MHz, CDCl₃) δ 7.31 – 7.12 (m, 2.6H, phenyl-H), 7.07 – 6.90 (m, 2.4H, phenyl-H), 4.80 (t, *J* = 4.5 Hz, 0.8 H, CH (HO)), 4.77 (d, *J* = 6.3 Hz, 0.4H, CH (HO)) 4.12 (br. s, 1H, OH), 3.25 – 3.13 (m, 0.4H, CH(CH₃)), 3.12 – 2.97 (m, 0.8H, CH(CH₃)), 2.88 – 2.78 (m, 4.6H, NCH₃), 2.12 – 1.64 (m, 4.8H, CH₂), 1.62 – 1.31 (m, 1.5H, CH₂), 1.05 (d, *J* = 6.6 Hz, 3H, CH₃), 0.91 (d, J = 6.6 Hz, 2H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 146.8, 137.6, 137.4, 127.5, 127.3, 126.3, 124.7, 122.4, 122.2, 119.10, 119.09, 73.1, 72.6, 57.3, 39.9, 39.6, 31.6, 29.8, 29.2, 28.1, 16.1, 14.5; MS (ESI) m/z 192.3 [M + H]⁺. HRMS (ESI-TOF): calcd. for C₁₂H₁₈NO [M + H]⁺ 192.1383; found 192.1387.

2-Isopropyl-1-methyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol (2l, syn)

Colourless oil (199 mg, 91%); ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.40 (m, 1H, phenyl-H), 7.18 (td, J = 7.5, 1.2 Hz, 1H, phenyl-H), 7.06 – 6.91 (m, 2H, phenyl-H), 4.80 (dd, J = 9.9, 4.2 Hz, 1H, CH(HO)), 3.01 (s, 3H, NCH₃), 2.89 – 2.72 (m, 1H, CH(*i*-Pr)), 2.11 – 1.91 (m, 1H, CH₂), 1.85 – 1.53 (m, 4H, CH and CH₂), 0.85 (d, J = 6.6 Hz, 3H, CH₃), 0.71 (d, J = 6.9 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 137.9, 126.8, 123.7, 121.2, 120.3, 71.8, 66.8, 41.6, 31.3, 29.3, 26.2, 20.6, 18.8; HRMS (ESI-TOF): calcd. for C₁₄H₂₂NO [M + H]⁺ 220.1696; found 220.1706.

2-Methyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol (2m, syn/anti = 91/9)
White solid (142 mg, 80%); M.p. 103-105 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.45 –
7.38 (m, 0.1H, phenyl-H), 7.16 (dd, J = 7.5, 1.5 Hz, 0.81H, phenyl-H), 7.10 (td, J =

7.5, 1.5 Hz, 0.85H, phenyl-H), 7.00 – 6.87 (m, 0.85H, phenyl-H), 6.80 – 6.72 (m, 0.9H, phenyl-H), 4.80 (d, J = 8.7, 1.8 Hz, 0.1H, CH(OH)), 4.76 (d, J = 6.6 Hz, 0.9H, CH(OH)), 3.52 (br. s, 2H, OH and NH), 3.12 – 2.86 (m, 1.2H, CH(CH₃)), 2.29 – 2.11 (m, 1H, CH₂), 2.04 – 1.85 (m, 1.2H, CH₂), 1.81 – 1.63 (m, 2.1H, CH₂), 1.28 (d, J = 6.6 Hz, 3H, CH₃), 1.21 (d, J = 6.6 Hz, 0.3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 146.9, 135.6, 128.9, 128.1, 127.2, 126.4, 122.0, 121.1, 120.8, 120.1, 74.5, 72.5, 54.6, 52.6, 34.5, 33.5, 32.4, 32.0, 23.9, 23.0; HRMS (ESI-TOF): calcd. for C₁₁H₁₆NO [M + H]⁺ 178.1226; found 178.1232.

2-Methyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol syn-2m

¹H NMR (300 MHz, CDCl₃) δ 7.16 (dd, J = 7.5, 1.5 Hz, 1H, phenyl-H), 7.10 (td, J = 7.5, 1.5 Hz, 1H, phenyl-H), 6.92 (td, J = 7.5, 1.2 Hz, 1H, phenyl-H), 6.75 (dd, J = 7.5, 1.2 Hz, 1H, phenyl-H), 4.76 (d, J = 6.6 Hz, 1H, CH(OH)), 3.56 (br. s, 2H, OH and NH), 3.08 – 2.81 (m, 1H, CH(CH₃)), 2.34 – 2.07 (m, 1H, CH₂), 2.06 – 1.85 (m, 1H, CH₂), 1.82 – 1.59 (m, 2H, CH₂), 1.28 (d, J = 6.6 Hz, 3H, CH₃); MS (ESI) *m*/*z* 177.9 [M + H]⁺. ¹³C NMR (75 MHz, CDCl₃) δ 146.9, 135.6, 128.9, 128.1, 122.1, 120.9, 74.6, 54.7, 32.4, 32.0, 24.0. HRMS (ESI-TOF): calcd. for C₁₁H₁₆NO [M + H]⁺ 178.1226; found 178.1230. CCDC 1033762 contains the supplementary crystallographic data for this compound.

2-Allyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-ol (2n, syn/anti = 75/25)

Colourless oil (164 mg, 81%); ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.38 (m, 0.3H, phenyl-H), 7.16 (dd, J = 7.5, 1.5 Hz, 1H, phenyl-H), 7.13 – 7.05 (m, 1.2H, phenyl-H), 6.99 – 6.87 (m, 1.2H, phenyl-H), 6.75 – 6.68 (m, 1.3H, phenyl-H), 5.94 – 5.70 (m, 1.1H, CH₂CH=CH₂), 5.29 – 5.11 (m, 2.7H, CH₂CH=CH₂), 4.80 (dd, J = 9.0, 1.8 Hz, 0.3H, CH(OH)), 4.77 (d, J = 6.6 Hz, 1H, CH(OH)), 3.63 (br.s, 1.4H, NH), 2.98 – 2.75 (m, 1.4H, CH(Allyl)), 2.42 – 2.31 (m, 1.3H, CH₂), 2.31 – 2.14 (m, 2.6H, CH₂), 2.14 – 1.87 (m, 2H, CH₂), 1.84 – 1.56 (m, 2.6H, CH₂); ¹³C NMR (75 MHz, CDC₃) δ 146.8, 146.2, 135.8, 135.43, 135.37, 135.2, 128.9, 128.1, 127.3, 126.4, 122.1, 121.2, 120.8, 120.1, 118.5, 118.2, 74.5, 72.4, 57.6, 55.8, 41.8, 41.1, 33.6, 33.0, 32.4, 30.6; MS (ESI) m/z 203.9 [M + H]⁺. HRMS (ESI-TOF): calcd. for C₁₃H₁₈NO [M + H]⁺ 204.1383; found 204.1391.

General Procedure for the Synthesis of 3

To a solution of compound **2** (0.5 mmol) in dry CH_2Cl_2 (10 mL) at -10 °C was added Dess-Martin (0.6 mmol). The resulting solution was stirred at -10 °C until compound **2** had been consumed, as monitored by TLC. The mixture was extracted with CH_2Cl_2 (3 × 15 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (petroleum ether/ethyl acetate = 10:1, v/v) afforded the desired product 3.

1-Allyl-2-methyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3a)

Colourless oil (91 mg, 85%); ¹H NMR (300 MHz, CDCl₃) δ 7.79 – 7.66 (m, 1H, phenyl-H), 7.47 – 7.30 (m, 1H, phenyl-H), 6.95 (dd, J = 11.1, 4.2 Hz, 2H, phenyl-H), 5.98 – 5.70 (m, 1H, CH₂CH=CH₂), 5.36 – 5.09 (m, 2H, CH₂CH=CH₂), 4.03 – 3.83 (m, 2H, *CH*₂CH=CH₂), 3.65 – 3.39 (m, 1H, *CH*(CH₃)), 2.85 – 2.60 (m, 2H, CH₂), 2.34 – 2.08 (m, 1H, CH₂), 1.85 – 1.64 (m, 1H, CH₂), 1.04 (d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 204.2, 150.0, 136.0, 132.6, 131.9, 129.3, 121.0, 120.8, 117.1, 56.4, 52.5, 40.3, 34.4, 16.4; HRMS (ESI-TOF): calcd. for C₁₄H₁₈NO [M + H]⁺ 216.1383; found 216.1376.

1-Allyl-2-ethyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3b)

Colourless oil (95 mg, 83%); ¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, J = 7.8, 1.8 Hz, 1H, phenyl-H), 7.42 – 7.30 (m, 1H, phenyl-H), 6.98 (d, J = 8.1 Hz, 1H, phenyl-H), 6.91 (t, J = 7.5 Hz, 1H, phenyl-H), 6.03–5.77 (m, 1H, CH₂CH=CH₂), 5.27 (dq, J = 17.1, 1.5 Hz, 1H, CH₂CH=CH₂), 5.18 (dq, J = 10.2, 1.5 Hz, 1H, CH₂CH=CH₂), 4.14 – 3.93 (m, 2H, CH_2 CH=CH₂), 3.38 – 3.22 m, 1H), 2.82 – 2.66 (m, 2H), 2.49 – 2.27 (m,

1H), 1.94 - 1.61 (m, 2H), 1.39 - 1.19 (m, 1H), 0.79 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 203.8, 151.1, 136.1, 132.6, 130.5, 129.2, 120.1, 119.9, 117.3, 62.9, 53.0, 40.4, 33.4, 25.1, 11.1; HRMS (ESI-TOF): calcd. for C₁₅H₂₀NO [M + H]⁺ 230.1539; found 230.1552.

1-Allyl-2-isopropyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3c)

Colourless oil (91 mg, 86%); ¹H NMR (300 MHz, CDCl₃) δ 7.80 – 7.69 (m, 1H, phenyl-H), 7.38 – 7.29 (m, 1H, phenyl-H), 7.06 – 6.94 (m, 1H, phenyl-H), 6.91 – 6.80 (m, 1H, phenyl-H), 6.05 – 5.75 (m, 1H, CH₂CH=CH₂), 5.35 – 5.11 (m, 2H, CH₂CH=CH₂), 4.22 – 4.01 (m, 2H, CH₂CH=CH₂), 3.13 – 2.97 (m, 1H, CH(*i*-Pr)), 2.84 – 2.64 (m, 2H, CH₂), 2.45 – 2.25 (m, 1H, CH₂), 2.15 – 1.98 (m, 1H, CH₂), 1.98 – 1.85 (m, 1H, CH), 0.82 (d, J = 6.6 Hz, 3H, CH₃), 0.78 (d, J = 6.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 203.2, 152.3, 136.0, 132.6, 129.5, 129.2, 119.7, 119.4, 117.6, 76.6, 68.7, 53.6, 40.6, 31.9, 30.4, 20.8, 19.8; HRMS (ESI-TOF): calcd. for C₁₆H₂₂NO [M + H]⁺ 244.1696; found 244.1687.

1-Allyl-2-cyclohexyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3d)

Colourless oil (113 mg, 80%); ¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, J = 7.8, 1.8 Hz,

1H, phenyl-H), 7.38 – 7.28 (m, 1H, phenyl-H), 6.99 (d, J = 8.4 Hz, 1H, phenyl-H), 6.85 (t, J = 7.5 Hz, 1H, phenyl-H), 6.05 – 5.75 (m, 1H, CH₂CH=CH₂), 5.40 – 5.10 (m, 2H, CH₂CH=CH₂), 4.21 – 3.95 (m, 2H, CH₂CH=CH₂), 3.18 – 3.01 (m, 1H, CH(Cy)), 2.86 – 2.63 (m, 2H, CH₂), 2.45 – 2.23 (m, 1H, CH₂), 2.19 – 1.97 (m, 1H, CH₂), 1.74 – 1.47 (m, 6H, CH₂), 1.30 – 0.96 (m, 3H, CH₂ and CH), 0.95 – 0.70 (m, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 203.2, 152.7, 136.1, 132.5, 129.4, 129.2, 119.5, 119.3, 117.5, 67.8, 53.2, 40.6, 40.1, 32.1, 31.1, 30.2, 26.2, 26.0, 25.9; HRMS (ESI-TOF): calcd. for C₁₉H₂₆NO [M + H]⁺ 284.2009; found 284.2002.

1,2-Diallyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3e)

Light brown oil (90 mg, 75%); ¹H NMR (300 MHz, CDCl₃) δ 7.75 (dd, J = 7.8, 1.8 Hz, 1H, phenyl-H), 7.45 – 7.30 (m, 1H, phenyl-H), 7.07 – 6.88 (m, 2H, phenyl-H), 5.98 – 5.76 (m, 1H, NCH₂CH=CH₂), 5.75 – 5.54 (m, 1H, CH₂CH=CH₂), 5.40 – 5.12 (m, 2H, NCH₂CH=CH₂), 5.04 – 4.88 (m, 2H, CH₂CH=CH₂), 4.14 – 3.90 (m, 2H, NCH₂CH=CH₂), 3.56 – 3.34 (m, 1H, CH(Allyl)), 2.80 – 2.66 (m, 2H, CH₂), 2.55 – 2.40 (m, 1H, CH₂CH=CH₂), 2.39 – 2.21 (m, 1H, CH₂), 2.05 – 1.88 (m, 1H, CH₂CH=CH₂), 1.85 – 1.66 (m, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 203.8, 150.2, 135.9, 135.0, 132.8, 131.5, 129.3, 121.0, 120.9, 117.5, 117.1, 60.7, 53.4, 40.3, 36.3, 32.4; HRMS (ESI-TOF): calcd. for C₁₆H₂₀NO [M + H]⁺ 242.1539; found 242.1537.

1-Allyl-2-phenyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3f)

Colourless oil (122 mg, 88%); ¹H NMR (300 MHz, CDCl₃) δ 7.79 (dd, J = 7.8, 1.5 Hz, 1H, phenyl-H), 7.40 (ddd, J = 8.1, 7.2, 1.8 Hz, 1H, phenyl-H), 7.31 – 7.22 (m, 3H, phenyl-H), 7.07 (ddd, J = 7.8, 7.2, 1.2 Hz, 1H, phenyl-H), 7.03 – 6.94 (m, 2H, phenyl-H), 6.75 (dd, J = 8.1, 0.9 Hz, 1H, phenyl-H), 5.92 – 5.63 (m, 1H, CH₂CH=CH₂), 5.23 – 5.08 (m, 2H, CH₂CH=CH₂), 4.36 (dd, J = 11.7, 6.0 Hz, 1H, CH(Ph)), 3.80 – 3.35(m, 2H, CH₂CH=CH₂), 2.94 – 2.69 (m, 2H, CH₂), 2.44 – 2.26 (m, 1H, CH₂), 2.25 – 2.02 (m, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 204.8, 149.0, 140.4, 135.5, 133.12, 133.08, 129.6, 128.2, 127.8, 127.4, 122.7, 122.1, 117.8, 65.3, 53.7, 40.0, 31.1; HRMS (ESI-TOF): calcd. for C₁₉H₂₀NO [M + H]⁺ 278.1539; found 278.1545.

1-Allyl-2,7-dimethyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3g)

Colourless oil (101 mg, 88%); ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, J = 2.1 Hz, 1H, phenyl-H), 7.20 (ddd, J = 8.1, 2.4, 0.6 Hz, 1H, phenyl-H), 6.87 (d, J = 8.4 Hz, 1H, phenyl-H), 5.95 – 5.69 (m, 1H, CH₂CH=CH₂), 5.35 – 5.05 (m, 2H, CH₂CH=CH₂), 4.04 – 3.76 (m, 2H, CH₂CH=CH₂), 3.56 – 3.35 (m, 1H, CH(CH₃)), 2.78 – 2.62 (m, 2H, CH₂), 2.29 (s, 3H, PhCH₃), 2.23 – 2.06 (m, 1H, CH₂), 1.71 – 1.52 (m, 1H, CH₂), 1.00

(d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 204.9, 147.0, 136.1, 133.6, 132.4, 130.9, 129.4, 121.5, 117.0, 56.0, 52.9, 40.3, 33.5, 20.3, 15.7; HRMS (ESI-TOF): calcd. for C₁₅H₂₀NO [M + H]⁺ 230.1539; found 230.1544.

1,2-Diallyl-7-methyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3h)

Colourless oil (97 mg, 76%); ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, J = 2.4 Hz, 1H, phenyl-H), 7.19 (ddd, J = 8.4, 2.4, 0.6 Hz, 1H, phenyl-H), 6.88 (d, J = 8.4 Hz, 1H, phenyl-H), 5.90 – 5.75 (m, 1H, NCH₂CH=CH₂), 5.74 – 5.57 (m, 1H, CH₂CH=CH₂), 5.34 – 5.10 (m, 2H, NCH₂CH=CH₂), 5.01 – 4.90 (m, 2H, CH₂CH=CH₂), 4.15 – 3.82 (m, 2H, NCH₂CH=CH₂), 3.48 – 3.31 (m, 1H, CH(Allyl)), 2.82 – 2.63 (m, 2H, CH₂), 2.55 – 2.38 (m, 1H, CH₂CH=CH₂), 2.34 – 2.16 (m, 1H, CH₂), 2.29 (s, 3H, CH₃), 1.97 – 1.82 (m, 1H, CH₂CH=CH₂), 1.74 – 1.58 (m, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 204.3, 147.3, 136.0, 135.1, 133.7, 132.0, 130.9, 129.4, 121.5, 117.3, 117.0, 60.4, 53.7, 40.3, 35.9, 31.6, 20.3; MS (ESI) *m*/*z* 256.1 [M + H]⁺. HRMS (ESI-TOF): calcd. for C₁₇H₂₂NO [M + H]⁺ 256.1696; found 256.1705.

1-Allyl-7-chloro-2-methyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3i)

White solid (148 mg, 84%); M.P. 56-58 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J

= 2.7 Hz, 1H, phenyl-H), 7.30 (dd, J = 8.7, 2.7 Hz, 1H, phenyl-H), 6.90 (d, J = 8.7 Hz, 1H, phenyl-H), 5.90 – 5.71 (m, 1H, CH₂CH=CH₂), 5.32 – 5.12 (m, 2H, CH₂CH=CH₂), 4.03 – 3.81 (m, 2H, CH₂CH=CH₂), 3.62 – 3.37 (m, 1H, CH(CH₃)), 2.88 – 2.54 (m, 2H, CH₂), 2.35 – 2.12 (m, 1H, CH₂), 1.82 – 1.63 (m, 1H, CH₂), 1.04 (d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 202.8, 148.4, 135.4, 132.6, 132.4, 128.8, 126.3, 122.2, 117.5, 56.6, 52.4, 40.1, 34.2, 16.4; HRMS (ESI-TOF): calcd. for C₁₄H₁₇CINO [M + H]⁺ 250.0993; found 250.0999.

1,2-Diallyl-7-chloro-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3j)

White solid (107 mg, 78%); M.P. 49-51 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, *J* = 2.7 Hz, 1H, phenyl-H), 7.30 (dd, *J* = 8.7, 2.7 Hz, 1H, phenyl-H), 6.91 (d, *J* = 8.7 Hz, 1H, phenyl-H), 5.94 – 5.74 (m, 1H, NCH₂C*H*=CH₂), 5.73 – 5.53 (m, 1H, CH₂C*H*=CH₂), 5.36 – 5.12 (m, 2H, NCH₂CH=CH₂), 5.04 – 4.89 (m, 2H, CH₂CH=CH₂), 4.12 – 4.86 (m, 2H, NCH₂CH=CH₂), 3.56–3.35 (m, 1H, CH(Allyl)), 2.83 – 2.63 (m, 2H, CH₂), 2.54 – 2.38 (m, 1H, CH₂CH=CH₂), 2.38 – 2.21 (m, 1H, CH₂), 2.06 – 1.88 (m, 1H, CH₂CH=CH₂), 1.83 – 1.65 (m, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 202.3, 148.6, 135.3, 134.6, 132.5, 132.2, 128.8, 126.3, 122.3, 117.9, 117.4, 60.9, 53.5, 40.1, 36.3, 32.3; HRMS (ESI-TOF): calcd. for C₁₆H₁₉CINO [M + H]⁺ 276.1150; found 276.1152.

2-Methyl-3,4-dihydro-1H-benzo[b]azepin-5(2H)-one (3k)

Pale yellow oil (33 mg, 38%); ¹H NMR (300 MHz, CDCl₃) δ 7.71 (dd, J = 7.8, 1.5 Hz, 1H, phenyl-H), 7.27 – 7.19 (m, 1H, phenyl-H), 6.81 (ddd, J = 8.1, 7.2, 0.9 Hz, 1H, phenyl-H), 6.73 (dd, J = 8.1, 0.6 Hz, 1H, phenyl-H), 4.16 (br. s, 1H, NH), 3.35 – 3.12 (m, 1H, CH(CH₃)), 3.11 – 2.92 (m, 1H, CH₂), 2.60 (ddd, J = 11.4, 6.6, 2.1 Hz, 1H, CH₂), 2.27 – 2.09 (m, 1H, CH₂), 2.04 – 1.86 (m, 1H, CH₂), 1.33 (d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 202.8, 152.3, 132.3, 129.1, 125.1, 118.6, 117.7, 64.0, 54.8, 40.9, 39.0, 21.9; HRMS (ESI-TOF): calcd. for C₁₁H₁₄NO [M + H]⁺ 176.1070; found 176.1077.

Procedure for the synthesis of 4

To a solution of **3e** (121 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) was added Grubbs II catalyst (42.5 mg, 0.05 mmol) under an Ar atmosphere. The mixture was stirred at room temperature for 8 h. After compound **3e** had been consumed, the reaction mixture was cooled to room temperature. Water was added and the mixture was extracted with ethyl acetate (3×15 mL). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Purification by flash column chromatography (petroleum ether/ethyl acetate = 10:1, v/v) afforded the desired product **4**. ¹H NMR (300 MHz, CDCl₃) δ 7.69 (dd, J = 7.5, 1.8 Hz, 1H, phenyl-H), 7.45 – 7.33 (m, 1H, phenyl-H), 7.05 (d, J = 8.4 Hz, 1H, phenyl-H), 7.02 –

6.93 (m, 1H, phenyl-H), 6.03 – 5.82 (m, 2H, CH=CH), 4.11 – 3.99 (m, 1H, CH₂), 3.84 – 3.72 (m, 1H, CH₂), 3.60 – 3.44 (m, 1H, CH), 2.84 – 2.72 (m, 1H, CH₂), 2.67 – 2.57 (m, 1H, CH₂), 2.30 – 2.08 (m, 2H, CH₂), 2.06 – 1.91 (m, 1H, CH₂), 1.86 – 1.73 (m, 1H, CH₂). ¹³C NMR (75 MHz, CDCl₃) δ 204.8, 150.3, 133.1, 132.0, 129.4, 125.8, 125.5, 121.4 120.3, 57.0, 49.1, 39.4, 31.3, 29.6. HRMS (ESI-TOF): calcd. for C₁₄H₁₆NO [M + H]⁺ 214.1226; found 214.1221.

NMR Spectra

NMR spectrum of Compound S2a

NMR spectrum of Compound S2b

29

NMR spectrum of Compound S2c

30

NMR spectrum of Compound S2d

NMR spectrum of Compound 1a

NMR spectrum of Compound 1b

NMR spectrum of Compound 1c

NMR spectrum of Compound 1d

35

NMR spectrum of Compound 1e

NMR spectrum of Compound syn-2a

¹H NMR spectrum of Compound anti-2a

NMR spectrum of Compound **2b** (syn/anti = 91/9)

NMR spectrum of Compound **2c** (syn)

NMR spectrum of Compound 2d (syn)

NMR spectrum of Compound 2e (anti)

42

NMR spectrum of Compound 2f (syn/anti = 95/5)

NMR spectrum of Compound **2g** (syn/anti = 88/12)

NMR spectrum of Compound 2h (anti)

NMR spectrum of Compound 2i (syn/anti = 67/33)

NMR spectrum of Compound 2j (anti)

NMR spectrum of Compound 2k (syn/anti = 68/32)

NMR spectrum of Compound 2l (syn)

f1 (ppm) -10 . 10 Ó

NMR spectrum of Compound syn-2m

NMR spectrum of Compound 3a

NMR spectrum of Compound 3b

NMR spectrum of Compound 3c

55

NMR spectrum of Compound 3d

NMR spectrum of Compound 3e

57

NMR spectrum of Compound 3f

NMR spectrum of Compound 3g

NMR spectrum of Compound 3h

NMR spectrum of Compound 3i

NMR spectrum of Compound 3j

62

NMR spectrum of Compound 3k

NMR spectrum of Compound 4

X-ray Crystallographic data for Compound syn-2m

The crystallographic data of syn-**2m** (CCDC 1033762) can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk.</u>

Confirmation of the ratio of stereoisomers 2

Through the analysis of ¹H NMR spectra, the chemical shifts of hydrogen on C1 of different isomers are significantly different. The diastereomeric ratio of compound **2m** were calculated by ¹H NMR spectroscopy (by comparison of the chemical shifts of the proton H₁ at 4.81 ppm (anti-**2m**) and 4.76 ppm (syn-**2m**)). In the same way, the diastereomeric ratio of compound **2n** can also be calculated (S-Table 1).

Entry	structure	<i>H</i> (C1)	isomer 1/isomer 2	syn/anti
1	HO	isomer 1: 4.81 (dd, <i>J</i> = 8.7, 1.8 Hz)	1:10	91/9
		isomer 2: 4.76 (d, <i>J</i> = 6.3 Hz)		
	2m			
2	HO 1	isomer 1:4.81 (dd, J = 8.7, 1.8 Hz)	1:3	75/25
		isomer 2: 4.77 (d, <i>J</i> = 6.6 Hz)		
	Ë			
	2n			

S-Table 1 Confirmation of the diastereomeric ratio of compound 2m and 2n

The ¹H NMR spectrums of the compounds with a substituent attached to the nitrogen atom were quite different from compound 2m, so the diastereomeric ratio could not be calculated by direct comparison. Therefore, we established the correlation between these two types of compounds using chemical method. Treatment of 2a and 2e with Pd(OAc)₂ and *N*,*N*-dimethylbarbituricacid (NDMBA) proceeded to give 2m and 2n, without affecting the chirality of the substrate^[1-9]. Then, the diastereomeric ratio of 2a and 2e could be determined (S-Fig. 1 and S-Fig. 2).

S-Fig.1 Correlation between compound 2a and 2m

S-Fig.2 Correlation between compound 2e and 2n

The stereochemistry in the rest of the series could be unambiguously assigned by

comparison of their NMR spectra with those of 2a and 2e (S-Table 2).

entry	structure	<i>H</i> (C1)	isomer 1/ isomer 2	syn/anti
1	HO	isomer 1: 4.99 (dd, J = 8.1, 4.8 Hz)	2.22:1	69/31
		isomer 2: 4.71 (t, <i>J</i> = 4.5 Hz)		
	2a			
2	HO	isomer 1: 4.89 (dd, J=9.6, 3.6 Hz)	10:1	91/9
		isomer 2: 4.71 (br. s)		
	2b			
3	HO	4.83 (dd, <i>J</i> = 10.2, 3.6 Hz, 1H).	single	100/0
	N			
	2c			
4	HO	4.82 (dd, <i>J</i> = 10.2, 3.3 Hz)	single	100/0
	d			
5	HO 1	4.72 (br. s, 1H)	single	0/100
	N N			
	2e			
6	HO	5.36 (t, <i>J</i> = 8.1 Hz, 1H)	single	100/0
	2f			

S-Table 2 Confirmation of the diastereomeric ratio of compound 2a-l

7	HO	isomer 1: 4.98 (dd, J = 7.8, 4.8 Hz)	7.69:1	88/12
	N N	isomer 2: 4.64 (t, <i>J</i> = 4.5 Hz)		
	2g			
8	HO	4.67 (br. s)	single	0/100
	2h			
9		isomer 1: 4.96 (dd, <i>J</i> = 8.7, 4.5 Hz)	2.04:1	67/33
		isomer 2: 4.68 (br. s)		
	2i			
10	HO CI N	4.69 (br. s)	single	0/100
	2j			
11	HO 1	isomer 1: 4.80 (t, <i>J</i> = 4.5 Hz)	2.13:1	68/32
		isomer 2: 4.77 (d)		
	2k			
12	HO N	4.80 (dd, <i>J</i> = 9.9, 4.2 Hz)	single	100/0
	21			

References:

- 1. F. Garro-Helion, A. Merzouk and F. Guibe, J. Org. Chem., 1993, 58, 6109-6113.
- S. Lemaire-Audoire, M. Savignac, J. P. Genêt and J.-M. Bernard, *Tetrahedron Lett.*, 1995, 36, 1267-1270.
- 3. Z. Ling, L. Yun, L. Liu, B. Wu and X. Fu, Chem. Commun., 2013, 49, 4214-4216.
- 4. S. G. Davies, A. M. Fletcher, J. A. Lee, T. J. A. Lorkin, P. M. Roberts and J. E. Thomson, *Tetrahedron*, 2013, 69, 9779-9803.
- S. Norsikian, J.-F. Soulé, A. Cannillo, R. Guillot, M.-E. Tran Huu Dau and J.-M. Beau, Org. Lett., 2012, 14, 544-547.
- S. G. Davies, J. R. Haggitt, O. Ichihara, R. J. Kelly, M. A. Leech, A. J. Price Mortimer, P. M. Roberts and A. D. Smith, *Org. Biomol. Chem.*, 2004, 2, 2630-2649.
- 7. S. Lou and S. E. Schaus, J. Am. Chem. Soc., 2008, 130, 6922-6923.
- J. I. Candela-Lena, S. G. Davies, P. M. Roberts, B. Roux, A. J. Russell, E. M.
 Sánchez-Fernández and A. D. Smith, *Tetrahedron: Asymmetry*, 2006, 17, 1135-1145.
- S. G. Davies, A. M. Fletcher, J. A. Lee, T. J. A. Lorkin, P. M. Roberts and J. E. Thomson, *Org. Lett.*, 2013, 15, 2050-2053.