Supplementary Material

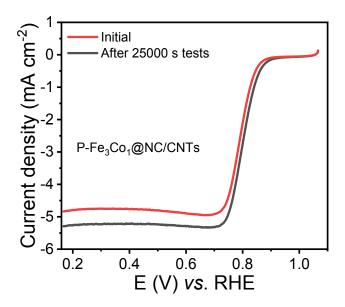
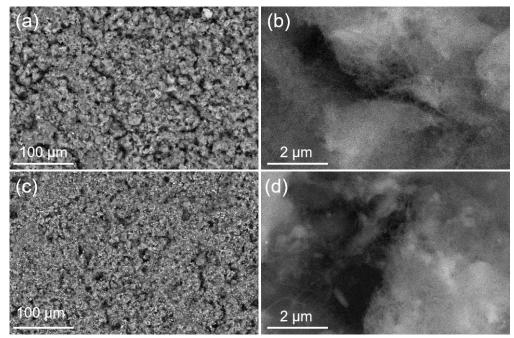
Phosphorus modification of cobalt—iron nanoparticles embedded in a nitrogen-doped carbon network for oxygen reduction reaction

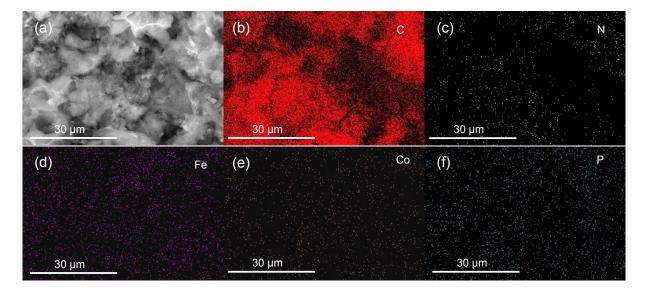
Rui Zhang a, Zheng Wang a, Lin Zhu a, Weixin Lv a, *, Wei Wang a, *

^a School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China

*Corresponding author.

E-mail address: lvweixin@ycit.edu.cn (W.X. Lv), wangw@ycit.edu.cn (W. Wang).


Fig. S1. ORR polarization curves before and after 25000s potential cycles for P-Fe₃Co₁@NC/CNTs catalyst.

The ORR polarization curves before and after 25000s durability evaluation at 0.6 V in an O_2 -saturated 0.1 M KOH solution are shown in Fig. S1. The activity of P-Fe₃Co₁@NC/CNTs decreased slightly after 25000s durability evaluation. This result corresponds to the durability evaluation results of Fig. S1.

The morphology of the P-FeCo@NC/CNTs on carbon paper substrate before and after discharge over 12 h are shown in Fig. S2. It can be seen that the morphology of the P-FeCo@NC/CNTs on carbon paper substrate did not change significantly before and after 12 h reaction. The Nafion ionomers protects the P-FeCo@NC/CNTs catalysts well.

Fig. S2 The morphology of the P-FeCo@NC/CNTs on carbon paper substrate before and after discharge over 12 h.

Fig. S3 SEM image and corresponding elemental mapping of C, N, Fe, Co and P of P-FeCo@NC/CNTs.

The EDS mapping of C, N, Fe, Co and P elements evenly distributed across the whole structures of P-FeCo@NC/CNTs on carbon paper substrate.

Table S1. Comparison of the catalytic performances of the P-FeCo@NC/CNTs prepared herein and other electrocatalysts reported in literature.

Catalyst	Loading	onset potential	half-wave Potential	limiting current	Reference
	(mg cm ⁻²)	(V vs. RHE)	(V vs. RHE)	Density (mA cm ⁻²)	
P-Fe ₃ Co ₁ @NC/CNTs	~0.4	0.86	0.802	5.29	This work
FeCo-N-C	~0.255	0.967	0.816	4.86	Chemcatchem, 2020, 12, 5780-5788.
Fe-N-C	0.38	0.98	0.831	4.2	Mater. Res. Express, 2020, 7, 025506.
FeCo@NC-750	0.8	0.94	0.8	4.82	Adv. Mater. Interfaces, 2018, 5 , 1701448.
FeCoNi/N-CNTs	~0.4	0.811	0.749	5.28	J. Alloys Compd, 2021, 857 , 158249.
FeP@SA-Fe/HC-900	~0.5	0.941	0.843	~6.1	J. Coll. Interf. Sci, 2021, 583 , 371-375.
FeCu-N/C	~1.0	1.055	0.865	6.06	J. Alloys Compd, 2021, 826 , 154152.