Supporting information

Leaching of iron from copper tailings by sulfuric acid: behavior, kinetics and mechanism

Lei Tao^a, Langlang Wang^a, Kanghuai Yang^a, Xueqian Wang^a*, Lu Chen ^{b*}, Ping Ning^a

a. Faculty of Environmental Science and Engineering, Kunming University of Science

and Technology, PR, China

b. Faculty of Business Administration, Yunnan JiaoTong College, PR, China

Fig. S1 Effect of temperature on leaching of iron from primary Fe_3O_4 -containing mineral and pure Fe_3O_4 .

Fig. S2 S 2p spectra for the raw and leached copper tailings.

Fig. S3 Flow diagram of recovery Fe, Zn, and copper from copper tailing by sulfuric acid leaching.

Table S1 Peak positions, FWHW, and relative abundance from curve fitting of O 1sfor raw and leached copper tailings.

^{*} Corresponding author:

E-mail: wxq3000@aliyun.com (X. Q. Wang). Tel: +86 13888183303.

^{175394073@}qq.com (L. Chen).

Fig. S1 Effect of temperature on Leaching of iron from primary Fe_3O_4 -containing mineral and pure Fe_3O_4 . Experimental conditions: S/L ratio, 1: 10; sulfuric acid, 5%; stirring ratio, 400 rpm, and reaction time, 120 min.

To demonstrate the effect of temperature on the leaching of iron from Fe₃O₄, primary Fe₃O₄-containing mineral and pure Fe₃O₄ was used to study the leaching behavior. XRF analysis of the primary Fe₃O₄-containing mineral is as follows: Fe₂O₃, 57.26 wt.%, SiO₂, 21.29 wt.%, MgO, 8.97 wt.%, CaO, 7.48 wt.%, SO₃, 2.47 wt.%, Al₂O₃, 1.61 wt.%, MnO, 0.350 wt.%, P₂O₅, 0.153 wt.%, and CuO, 0.107 wt.%. As Fig. S1 shows, increased temperature would increase the leaching of iron from Fe₃O₄.

Fig. S2 S 2p spectra for the raw and leached copper tailings.

Table S1 Peak positions, FWHW, and relative abundance from curve fitting of O 1s $\,$

Sample	BE (eV)	FWHM (eV)	State of oxygen	Percentage (%)
Raw copper	530.85	1.85	Si-O-Fe (II)	51.82
tailing	532.50	4.42	Fe-O-Fe (II)/Si	10.49
	531.98	2.06	Fe (II)-O-Fe (III)	37.70
copper tailing	531.07	1.99	Si-O-Fe (II)	36.79
after leaching	532.84	1.45	Si-O-Si	16.13
1 h	533.30	2.58	Si-O-Si	10.97
	532.16	1.55	Fe-O-Fe (II)/Si	36.11
copper tailing	532.16	2.13	Fe-O-Fe (II)/Si	78.77
after leaching	530.38	1.52	Fe(II) _{1-x} -O-Fe (III)	12.28
2 h	533.08	3.22	Si-O-Si	8.95

for raw and leached copper tailings.

Fig. S3 Flow diagram of recovery Fe, Zn, and copper from copper tailing by sulfuric acid leaching.